A New Era for Cancer Target Therapies: Applying Systems Biology and Computer-Aided Drug Design to Cancer Therapies

癌症治疗 计算机科学 癌症 药物发现 癌症治疗 药品 药物开发 计算生物学 生物信息学 医学 生物 药理学 内科学
作者
Yung-Hao Wong,Chia-Chiun Chiu,Chih‐Lung Lin,Ting-Shou Chen,Bo-Ren Jheng,Yu‐Ching Lee,Jeremy J.W. Chen,Bor‐Sen Chen
出处
期刊:Current Pharmaceutical Biotechnology [Bentham Science]
卷期号:17 (14): 1246-1267 被引量:8
标识
DOI:10.2174/1389201017666161019160606
摘要

In recent years, many systems biology approaches have been used with various cancers. The materials described here can be used to build bases to discover novel cancer therapy targets in connection with computer-aided drug design (CADD). A deeper understanding of the mechanisms of cancer will provide more choices and correct strategies in the development of multiple target drug therapies, which is quite different from the traditional cancer single target therapy. Targeted therapy is one of the most powerful strategies against cancer and can also be applied to other diseases. Due to the large amount of progress in computer hardware and the theories of computational chemistry and physics, CADD has been the main strategy for developing novel drugs for cancer therapy. In contrast to traditional single target therapies, in this review we will emphasize the future direction of the field, i.e., multiple target therapies. Structure-based and ligand-based drug designs are the two main topics of CADD. The former needs both 3D protein structures and ligand structures, while the latter only needs ligand structures. Ordinarily it is estimated to take more than 14 years and 800 million dollars to develop a new drug. Many new CADD software programs and techniques have been developed in recent decades. We conclude with an example where we combined and applied systems biology and CADD to the core networks of four cancers and successfully developed a novel cocktail for drug therapy that treats multiple targets. Keywords: Carcinogenesis, network markers, carcinogenesis relevance value, protein-protein interactions, computer-aided drug design, multiple target cocktail.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ANDRT完成签到,获得积分10
刚刚
1秒前
orixero应助nuomi采纳,获得10
1秒前
Kiling发布了新的文献求助10
2秒前
2秒前
2秒前
4秒前
5秒前
聪明的绮波完成签到,获得积分10
7秒前
儒雅的裘发布了新的文献求助10
7秒前
hongjie_w发布了新的文献求助10
10秒前
我是老大应助Nacy采纳,获得10
11秒前
16秒前
17秒前
科研通AI2S应助可乐采纳,获得10
19秒前
20秒前
KSDalton应助寒冷忆山采纳,获得10
22秒前
fzr706应助yhr采纳,获得10
22秒前
23秒前
JIA发布了新的文献求助10
24秒前
24秒前
27秒前
无私幻枫完成签到,获得积分20
27秒前
longxingbo发布了新的文献求助10
28秒前
lalala发布了新的文献求助10
29秒前
30秒前
无私幻枫发布了新的文献求助10
31秒前
lalalala发布了新的文献求助10
31秒前
32秒前
丘比特应助32采纳,获得10
33秒前
34秒前
35秒前
35秒前
南风完成签到,获得积分10
36秒前
YangMengJing_发布了新的文献求助10
37秒前
wan发布了新的文献求助10
38秒前
我是老大应助Cynthia采纳,获得10
38秒前
Nacy发布了新的文献求助10
38秒前
英俊的铭应助Rian采纳,获得10
39秒前
40秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 910
The Vladimirov Diaries [by Peter Vladimirov] 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3265155
求助须知:如何正确求助?哪些是违规求助? 2905120
关于积分的说明 8332765
捐赠科研通 2575538
什么是DOI,文献DOI怎么找? 1399868
科研通“疑难数据库(出版商)”最低求助积分说明 654595
邀请新用户注册赠送积分活动 633449