计算机科学
任务(项目管理)
同步(交流)
光学(聚焦)
人工神经网络
人工智能
深层神经网络
深度学习
调制(音乐)
机器学习
语音识别
频道(广播)
电信
工程类
光学
物理
哲学
系统工程
美学
作者
Nathan West,Tim O’Shea
出处
期刊:IEEE International Symposium on Dynamic Spectrum Access Networks
日期:2017-03-01
被引量:389
标识
DOI:10.1109/dyspan.2017.7920754
摘要
We survey the latest advances in machine learning with deep neural networks by applying them to the task of radio modulation recognition. Results show that radio modulation recognition is not limited by network depth and further work should focus on improving learned synchronization and equalization. Advances in these areas will likely come from novel architectures designed for these tasks or through novel training methods.
科研通智能强力驱动
Strongly Powered by AbleSci AI