拉曼光谱
材料科学
电化学
阳极
插层(化学)
透射电子显微镜
离子
千分尺
粒子(生态学)
三元运算
纳米
化学工程
粒径
过渡金属
化学计量学
纳米技术
分析化学(期刊)
化学
无机化学
电极
物理化学
复合材料
色谱法
催化作用
生物化学
工程类
有机化学
地质学
物理
光学
计算机科学
程序设计语言
海洋学
作者
Jianguang Xu,Meng‐Qiang Zhao,Yuchen Wang,Wei Yao,Chi Chen,Babak Anasori,Asia Sarycheva,Chang E. Ren,Tyler S. Mathis,Luisa Gomes,Liang Zhenghua,Yury Gogotsi
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2016-11-01
卷期号:1 (6): 1094-1099
被引量:62
标识
DOI:10.1021/acsenergylett.6b00488
摘要
Herein we report on the reversible electrochemical intercalation of Li ions into Ti2SC and Ti3SiC2, layered ternary transition-metal carbides, known as MAX phases. It is demonstrated that the particle size plays an important role in the electrochemical performance of MAX phases. Ti2SC particles with a size of hundreds of nanometers showed an initial reversible capacity of ∼80 mAh g–1 at 4 C, which increased to ∼180 mAh g–1 after 1000 cycles. This capacity was two times higher than that of Ti2SC with micrometer-sized particles. The increasing capacity with cycling was considered evidence for the reversible intercalation of Li ions into Ti2SC, as confirmed by transmission electron microscopy and Raman spectroscopy. In addition to Ti2SC, other MAX phases, such as Ti3SiC2, also exhibit promising Li-ion storage capability. This work suggests that the MAX phases, a large family of more than 70 stoichiometric phases and numerous solid solutions, are promising anode materials for Li-ion batteries and capacitors.
科研通智能强力驱动
Strongly Powered by AbleSci AI