Introduction to Derivative-Free Optimization

衍生工具(金融) 计算机科学 数学优化 数学 经济 金融经济学
作者
Andrew R. Conn,Katya Scheinberg,L. N. Vicente
标识
DOI:10.1137/1.9780898718768
摘要

The absence of derivatives, often combined with the presence of noise or lack of smoothness, is a major challenge for optimization. This book explains how sampling and model techniques are used in derivative-free methods and how these methods are designed to efficiently and rigorously solve optimization problems. Although readily accessible to readers with a modest background in computational mathematics, it is also intended to be of interest to researchers in the field. Introduction to Derivative-Free Optimization is the first contemporary comprehensive treatment of optimization without derivatives. This book covers most of the relevant classes of algorithms from direct search to model-based approaches. It contains a comprehensive description of the sampling and modeling tools needed for derivative-free optimization; these tools allow the reader to better understand the convergent properties of the algorithms and identify their differences and similarities. Introduction to Derivative-Free Optimization also contains analysis of convergence for modified Nelder Mead and implicit-filtering methods, as well as for model-based methods such as wedge methods and methods based on minimum-norm Frobenius models. Audience: The book is intended for anyone interested in using optimization on problems where derivatives are difficult or impossible to obtain. Such audiences include chemical, mechanical, aeronautical, and electrical engineers, as well as economists, statisticians, operations researchers, management scientists, biological and medical researchers, and computer scientists. It is also appropriate for use in an advanced undergraduate or early graduate-level course on optimization for students having a background in calculus, linear algebra, and numerical analysis. Contents: Preface; Chapter 1: Introduction; Part I: Sampling and modeling; Chapter 2: Sampling and linear models; Chapter 3: Interpolating nonlinear models; Chapter 4: Regression nonlinear models; Chapter 5: Underdetermined interpolating models; Chapter 6: Ensuring well poisedness and suitable derivative-free models; Part II: Frameworks and algorithms; Chapter 7: Directional direct-search methods; Chapter 8: Simplicial direct-search methods; Chapter 9: Line-search methods based on simplex derivatives; Chapter 10: Trust-region methods based on derivative-free models; Chapter 11: Trust-region interpolation-based methods; Part III: Review of other topics; Chapter 12: Review of surrogate model management; Chapter 13: Review of constrained and other extensions to derivative-free optimization; Appendix: Software for derivative-free optimization; Bibliography; Index.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
ting完成签到,获得积分20
2秒前
花子完成签到,获得积分10
2秒前
上官若男应助yidezeng采纳,获得10
3秒前
Ren发布了新的文献求助10
3秒前
4秒前
天真初蝶发布了新的文献求助10
4秒前
XiaoHU发布了新的文献求助10
4秒前
麻花辫女孩完成签到,获得积分10
4秒前
学术猪八戒完成签到,获得积分20
4秒前
5秒前
虚心青完成签到,获得积分20
5秒前
5秒前
yyst发布了新的文献求助10
6秒前
傲娇的凡旋应助想飞的猪采纳,获得10
6秒前
好名字完成签到,获得积分10
6秒前
qzp98完成签到,获得积分10
7秒前
王小小发布了新的文献求助10
7秒前
8秒前
科研通AI2S应助即将高产sci采纳,获得10
8秒前
jillian完成签到,获得积分20
9秒前
科目三应助星球日记采纳,获得10
9秒前
良辰应助dsgfsdfg采纳,获得10
9秒前
吃梨小手完成签到,获得积分10
9秒前
Pinocchior完成签到,获得积分10
9秒前
wusj发布了新的文献求助10
10秒前
10秒前
AN发布了新的文献求助10
10秒前
华仔应助爱听歌的亦玉采纳,获得10
10秒前
11秒前
zhuj11应助sad采纳,获得10
11秒前
小楼完成签到,获得积分10
11秒前
jillian发布了新的文献求助10
12秒前
思源应助iKUN老司机采纳,获得10
13秒前
13秒前
nenoaowu发布了新的文献求助10
13秒前
科研通AI2S应助执执采纳,获得10
13秒前
TTC发布了新的文献求助10
14秒前
Langsam发布了新的文献求助10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3543565
求助须知:如何正确求助?哪些是违规求助? 3120838
关于积分的说明 9344680
捐赠科研通 2818938
什么是DOI,文献DOI怎么找? 1549855
邀请新用户注册赠送积分活动 722316
科研通“疑难数据库(出版商)”最低求助积分说明 713126