丁酸盐
韧皮部
一元羧酸盐转运体
分子生物学
化学
肾
共转运蛋白
转染
生物化学
运输机
生物
内分泌学
发酵
基因
作者
Qi Wang,Ye Lu,Min Yuan,Inger M. Darling,Elizabeth A. Repasky,Marilyn E. Morris
摘要
The objectives of this study were to characterize the expression and function of monocarboxylate transporters (MCTs) in human kidney HK-2 cells and to compare the expression of MCTs in HK-2 cells to that found in human kidney. mRNA and protein expression of MCTs were determined by RT-PCR and Western analyses, respectively, while immunofluorescence staining was used to determine the membrane localization of MCT1. The driving force, transport kinetics, and inhibition of two MCT substrates, d-lactate and butyrate, were characterized in HK-2 cells. mRNA of MCT1, -2, -3, -4 isoforms were present in HK-2 cells and in human kidney cortex. MCT1 was present predominantly on the basal membranes of HK-2 cells. The cellular uptake of d-lactate and butyrate exhibited pH- and concentration-dependence (d-lactate, Km of 26.5 ± 2.2 mM and Vmax of 72.0 ± 14.5 nmol mg-1 min-1; butyrate, Km of 0.8 ± 0.3 mM, Vmax of 29.3 ± 2.5 nmol mg-1 min-1, and a diffusional clearance of 2.1 μL mg-1 min-1). The uptake of d-lactate and butyrate by HK-2 cells was inhibited by MCT analogues and the classical MCT inhibitors α-cyano-4-hydroxycinnamate, pCMB, and phloretin. The uptake of d-lactate and butyrate by HK-2 cells significantly decreased after transfection with small-interference RNA for MCT1. In summary, MCTs were present in both HK-2 cells and human kidney cortex, and HK-2 cells exhibited polarized MCT expression and pH-dependent transport of d-lactate and butyrate. Our results also support the usefulness of HK-2 cells as an in vitro model for studying monocarboxylate transport in renal proximal tubule cells. Keywords: Monocarboxylate transporter (MCT); HK-2 cells; RNA interference; cellular transport
科研通智能强力驱动
Strongly Powered by AbleSci AI