Off-Grid Direction of Arrival Estimation Using Sparse Bayesian Inference

计算机科学 算法 快照(计算机存储) 网格 贝叶斯推理 到达方向 贝叶斯概率 离散化 数学 人工智能 电信 数学分析 几何学 天线(收音机) 操作系统
作者
Zai Yang,Lihua Xie,Cishen Zhang
出处
期刊:IEEE Transactions on Signal Processing [Institute of Electrical and Electronics Engineers]
卷期号:61 (1): 38-43 被引量:703
标识
DOI:10.1109/tsp.2012.2222378
摘要

Direction of arrival (DOA) estimation is a classical problem in signal processing with many practical applications. Its research has recently been advanced owing to the development of methods based on sparse signal reconstruction. While these methods have shown advantages over conventional ones, there are still difficulties in practical situations where true DOAs are not on the discretized sampling grid. To deal with such an off-grid DOA estimation problem, this paper studies an off-grid model that takes into account effects of the off-grid DOAs and has a smaller modeling error. An iterative algorithm is developed based on the off-grid model from a Bayesian perspective while joint sparsity among different snapshots is exploited by assuming a Laplace prior for signals at all snapshots. The new approach applies to both single snapshot and multi-snapshot cases. Numerical simulations show that the proposed algorithm has improved accuracy in terms of mean squared estimation error. The algorithm can maintain high estimation accuracy even under a very coarse sampling grid.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助科研通管家采纳,获得10
刚刚
刚刚
刚刚
刚刚
今后应助科研通管家采纳,获得10
刚刚
星星完成签到,获得积分10
1秒前
狄振家发布了新的文献求助10
1秒前
哎健身完成签到 ,获得积分10
4秒前
修杰发布了新的文献求助10
4秒前
4秒前
Zu完成签到,获得积分10
5秒前
shinn发布了新的文献求助10
5秒前
lq发布了新的文献求助10
5秒前
6秒前
隐形曼青应助虚幻的焱采纳,获得10
7秒前
悬溺发布了新的文献求助10
7秒前
Yuanyuan发布了新的文献求助10
8秒前
8秒前
懒羊羊发布了新的文献求助10
8秒前
小白完成签到,获得积分10
8秒前
9秒前
彭笑笑完成签到,获得积分10
9秒前
bkagyin应助狄振家采纳,获得10
9秒前
10秒前
诗音时雨发布了新的文献求助10
10秒前
楠楠完成签到,获得积分10
12秒前
12秒前
lq完成签到,获得积分10
13秒前
14秒前
漂亮的美女完成签到,获得积分10
14秒前
paojiao发布了新的文献求助10
14秒前
懒羊羊完成签到,获得积分10
15秒前
诗音时雨完成签到,获得积分10
17秒前
18秒前
云飞扬应助若水三千采纳,获得10
20秒前
jawa完成签到 ,获得积分10
21秒前
自由的甜瓜完成签到,获得积分10
21秒前
22秒前
23秒前
23秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952453
求助须知:如何正确求助?哪些是违规求助? 3497823
关于积分的说明 11088977
捐赠科研通 3228398
什么是DOI,文献DOI怎么找? 1784850
邀请新用户注册赠送积分活动 868913
科研通“疑难数据库(出版商)”最低求助积分说明 801303