Assessing the Performance of the MM/PBSA and MM/GBSA Methods. 1. The Accuracy of Binding Free Energy Calculations Based on Molecular Dynamics Simulations

分子动力学 化学 动力学(音乐) 热力学 能量(信号处理) 计算化学 材料科学 物理 数学 统计 声学
作者
Tingjun Hou,Junmei Wang,Youyong Li,Wei Wang
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:51 (1): 69-82 被引量:2364
标识
DOI:10.1021/ci100275a
摘要

The Molecular Mechanics/Poisson−Boltzmann Surface Area (MM/PBSA) and the Molecular Mechanics/Generalized Born Surface Area (MM/GBSA) methods calculate binding free energies for macromolecules by combining molecular mechanics calculations and continuum solvation models. To systematically evaluate the performance of these methods, we report here an extensive study of 59 ligands interacting with six different proteins. First, we explored the effects of the length of the molecular dynamics (MD) simulation, ranging from 400 to 4800 ps, and the solute dielectric constant (1, 2, or 4) on the binding free energies predicted by MM/PBSA. The following three important conclusions could be observed: (1) MD simulation length has an obvious impact on the predictions, and longer MD simulation is not always necessary to achieve better predictions. (2) The predictions are quite sensitive to the solute dielectric constant, and this parameter should be carefully determined according to the characteristics of the protein/ligand binding interface. (3) Conformational entropy often show large fluctuations in MD trajectories, and a large number of snapshots are necessary to achieve stable predictions. Next, we evaluated the accuracy of the binding free energies calculated by three Generalized Born (GB) models. We found that the GB model developed by Onufriev and Case was the most successful model in ranking the binding affinities of the studied inhibitors. Finally, we evaluated the performance of MM/GBSA and MM/PBSA in predicting binding free energies. Our results showed that MM/PBSA performed better in calculating absolute, but not necessarily relative, binding free energies than MM/GBSA. Considering its computational efficiency, MM/GBSA can serve as a powerful tool in drug design, where correct ranking of inhibitors is often emphasized.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
molamola完成签到,获得积分10
1秒前
莽哥发布了新的文献求助10
1秒前
xiaozhang完成签到,获得积分10
1秒前
2秒前
鱼儿游啊游完成签到,获得积分10
3秒前
4秒前
方方发布了新的文献求助10
4秒前
高贵的涛涛完成签到,获得积分10
4秒前
5秒前
知名不具完成签到 ,获得积分10
6秒前
学不懂完成签到,获得积分10
7秒前
大气的妙旋完成签到,获得积分10
7秒前
多情紫霜发布了新的文献求助30
8秒前
开放的玉米完成签到,获得积分10
9秒前
肥肥完成签到 ,获得积分10
10秒前
Lyw完成签到 ,获得积分10
10秒前
毛毛弟发布了新的文献求助10
10秒前
11秒前
小欧文完成签到,获得积分10
12秒前
1111111111应助kkkdachui采纳,获得10
13秒前
山山以川发布了新的文献求助10
13秒前
dagongren完成签到,获得积分10
13秒前
晓先森完成签到,获得积分10
15秒前
ny完成签到,获得积分10
16秒前
16秒前
juqiu发布了新的文献求助10
16秒前
彭于晏应助方方采纳,获得10
17秒前
科研通AI6应助多情紫霜采纳,获得10
17秒前
17秒前
18秒前
18秒前
所所应助雪花采纳,获得10
19秒前
Hello应助花花采纳,获得10
19秒前
cc完成签到,获得积分20
19秒前
20秒前
刘佳慧发布了新的文献求助10
20秒前
科研小陈完成签到,获得积分10
21秒前
pups发布了新的文献求助20
22秒前
JUNJUN发布了新的文献求助30
22秒前
麻辣炒年糕完成签到 ,获得积分10
22秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
Methoden des Rechts 600
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 380
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5284055
求助须知:如何正确求助?哪些是违规求助? 4437688
关于积分的说明 13814537
捐赠科研通 4318612
什么是DOI,文献DOI怎么找? 2370475
邀请新用户注册赠送积分活动 1365895
关于科研通互助平台的介绍 1329363