光致发光
毛细管作用
液晶
材料科学
量子点
管(容器)
光电子学
纳米技术
复合材料
作者
Min-Chi Cheng,Yu-Chuan Su,Vincent K. S. Hsiao
摘要
An optically switchable photoluminence (PL) photonic material using azobenzene-doped cholesteric liquid crystal (CLC)
-dispersed quantum dots (QDs) is demonstrated in the film and capillary tube, respectively. In the film, upon the light
irradiation the trans-to-cis photoisomerization of azobenzene makes the QD-dispersed CLC cell highly transparent thus
allowing most excitation photon to pass through the CLC cell and decreases the intensity of PL. In the capillary tube,
there are two situations upon the light irradiation: the intensity of PL decreases when the irradiation applied on the PL
excitation position; the intensity of PL increases when the irradiation applied ahead the PL excitation position. In view of
the considerable interests in PL of QDs for photonic applications, our study on optically switchable PL from azobenzene
doped CLC-dispersed QDs introduces a new approach of controlling emission of QDs by means of light. This may open
the door to new exploitation for applications of QD such as light switchable, emission based liquid-crystal display (LCD)
or optical communication device.
科研通智能强力驱动
Strongly Powered by AbleSci AI