相扑蛋白
费斯特共振能量转移
免疫沉淀
高通量筛选
化学
免疫印迹
泛素
生物化学
生物
细胞生物学
计算生物学
生物物理学
基因
物理
荧光
量子力学
作者
Coby B. Carlson,Robert A. Horton,Kurt W. Vogel
标识
DOI:10.1089/adt.2008.0188
摘要
The posttranslational modification of target substrates by the ubiquitin-like proteins, specifically the small ubiquitin-like modifier (SUMO), has emerged as an essential mechanism to regulate protein function and control intracellular trafficking. Traditional methods for monitoring either the attachment or removal of SUMO, such as gel electrophoresis or western blot, are effective but typically suffer from a lack of throughput. Here, we report the development and application of time-resolved Förster resonance energy transfer (TR-FRET)-based assays capable of detecting SUMOylation or deSUMOylation in a high-throughput screening (HTS) format. Using Ran GTPase-activating protein (RanGAP1) as a model target substrate, we have demonstrated that the SUMOylation of this protein can be detected using LanthaScreen® (Invitrogen, Carlsbad, CA) TR-FRET technology. Additionally, we have generated reagents useful for assessing the deSUMOylation activity of a sentrin-specific protease. All assays are performed in 384-well format and display excellent statistical data (Z' > 0.7) with high signal-to-background levels. Together, this collection of tools can be utilized in a modular approach to develop HTS assays for inhibitors of SUMOylation or deSUMOylation.
科研通智能强力驱动
Strongly Powered by AbleSci AI