Some methods for classification and analysis of multivariate observations

数学 一般化 人口 非参数统计 独立性(概率论) 多元统计 集合(抽象数据类型) 分类 样品(材料) 分拆(数论) 功能(生物学) 算法 统计 组合数学 计算机科学 算术 数学分析 社会学 人口学 生物 进化生物学 化学 色谱法 程序设计语言
作者
James B. MacQueen
摘要

The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means,' appears to give partitions which are reasonably efficient in the sense of within-class variance. That is, if p is the probability mass function for the population, S = {S1, S2, * *, Sk} is a partition of EN, and ui, i = 1, 2, * , k, is the conditional mean of p over the set Si, then W2(S) = ff=ISi f z u42 dp(z) tends to be low for the partitions S generated by the method. We say 'tends to be low,' primarily because of intuitive considerations, corroborated to some extent by mathematical analysis and practical computational experience. Also, the k-means procedure is easily programmed and is computationally economical, so that it is feasible to process very large samples on a digital computer. Possible applications include methods for similarity grouping, nonlinear prediction, approximating multivariate distributions, and nonparametric tests for independence among several variables. In addition to suggesting practical classification methods, the study of k-means has proved to be theoretically interesting. The k-means concept represents a generalization of the ordinary sample mean, and one is naturally led to study the pertinent asymptotic behavior, the object being to establish some sort of law of large numbers for the k-means. This problem is sufficiently interesting, in fact, for us to devote a good portion of this paper to it. The k-means are defined in section 2.1, and the main results which have been obtained on the asymptotic behavior are given there. The rest of section 2 is devoted to the proofs of these results. Section 3 describes several specific possible applications, and reports some preliminary results from computer experiments conducted to explore the possibilities inherent in the k-means idea. The extension to general metric spaces is indicated briefly in section 4. The original point of departure for the work described here was a series of problems in optimal classification (MacQueen [9]) which represented special
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
2秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
江蹇发布了新的文献求助10
5秒前
wade2016发布了新的文献求助10
6秒前
6秒前
酷酷的冰真应助fdscat采纳,获得10
7秒前
新火发布了新的文献求助10
7秒前
ZZZJW完成签到,获得积分10
9秒前
9秒前
希望天下0贩的0应助妖哥采纳,获得10
9秒前
传奇3应助zd采纳,获得10
11秒前
季不住完成签到,获得积分10
12秒前
12秒前
我唉科研发布了新的文献求助10
14秒前
xin完成签到,获得积分10
14秒前
赘婿应助IiIIIIiiIIIIii采纳,获得10
15秒前
李爱国应助布丁采纳,获得10
16秒前
上官若男应助江蹇采纳,获得10
16秒前
18秒前
zzzz发布了新的文献求助10
18秒前
19秒前
shencheng完成签到,获得积分10
20秒前
妖哥完成签到,获得积分10
20秒前
20秒前
思源应助Dylan采纳,获得10
20秒前
我唉科研完成签到,获得积分10
21秒前
胖虎不胖发布了新的文献求助10
22秒前
妖哥发布了新的文献求助10
23秒前
24秒前
25秒前
25秒前
hahaha发布了新的文献求助10
26秒前
英俊的铭应助yu采纳,获得10
28秒前
28秒前
ylwang24完成签到,获得积分20
29秒前
啦啦啦发布了新的文献求助10
30秒前
布丁发布了新的文献求助10
30秒前
Dylan发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3959821
求助须知:如何正确求助?哪些是违规求助? 3506056
关于积分的说明 11127696
捐赠科研通 3237994
什么是DOI,文献DOI怎么找? 1789429
邀请新用户注册赠送积分活动 871773
科研通“疑难数据库(出版商)”最低求助积分说明 803021