Some methods for classification and analysis of multivariate observations

数学 一般化 人口 非参数统计 独立性(概率论) 多元统计 集合(抽象数据类型) 分类 样品(材料) 分拆(数论) 功能(生物学) 算法 统计 组合数学 计算机科学 算术 数学分析 社会学 人口学 生物 进化生物学 化学 色谱法 程序设计语言
作者
James B. MacQueen
摘要

The main purpose of this paper is to describe a process for partitioning an N-dimensional population into k sets on the basis of a sample. The process, which is called 'k-means,' appears to give partitions which are reasonably efficient in the sense of within-class variance. That is, if p is the probability mass function for the population, S = {S1, S2, * *, Sk} is a partition of EN, and ui, i = 1, 2, * , k, is the conditional mean of p over the set Si, then W2(S) = ff=ISi f z u42 dp(z) tends to be low for the partitions S generated by the method. We say 'tends to be low,' primarily because of intuitive considerations, corroborated to some extent by mathematical analysis and practical computational experience. Also, the k-means procedure is easily programmed and is computationally economical, so that it is feasible to process very large samples on a digital computer. Possible applications include methods for similarity grouping, nonlinear prediction, approximating multivariate distributions, and nonparametric tests for independence among several variables. In addition to suggesting practical classification methods, the study of k-means has proved to be theoretically interesting. The k-means concept represents a generalization of the ordinary sample mean, and one is naturally led to study the pertinent asymptotic behavior, the object being to establish some sort of law of large numbers for the k-means. This problem is sufficiently interesting, in fact, for us to devote a good portion of this paper to it. The k-means are defined in section 2.1, and the main results which have been obtained on the asymptotic behavior are given there. The rest of section 2 is devoted to the proofs of these results. Section 3 describes several specific possible applications, and reports some preliminary results from computer experiments conducted to explore the possibilities inherent in the k-means idea. The extension to general metric spaces is indicated briefly in section 4. The original point of departure for the work described here was a series of problems in optimal classification (MacQueen [9]) which represented special
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
清蒸完成签到,获得积分20
1秒前
1秒前
Akim应助奇奇怪怪采纳,获得10
2秒前
2秒前
善学以致用应助嘎嘎嘎嘎采纳,获得10
2秒前
小冉不熬夜完成签到 ,获得积分10
2秒前
2秒前
于小鱼发布了新的文献求助10
3秒前
3秒前
4秒前
yyl发布了新的文献求助10
4秒前
panx发布了新的文献求助10
4秒前
啊富汗发布了新的文献求助10
4秒前
领导范儿应助曲奇喵采纳,获得10
5秒前
wxy发布了新的文献求助10
5秒前
LiuuLingg602完成签到,获得积分10
6秒前
科研通AI2S应助清蒸采纳,获得10
6秒前
7秒前
爱睡午觉发布了新的文献求助10
7秒前
Paul111完成签到,获得积分10
7秒前
邓怡发布了新的文献求助10
8秒前
车幻梦发布了新的文献求助10
9秒前
玲玲发布了新的文献求助10
9秒前
10秒前
10秒前
11秒前
在水一方应助车幻梦采纳,获得10
11秒前
hhhyyy发布了新的文献求助10
12秒前
万能图书馆应助wjw采纳,获得10
12秒前
小马甲应助科研小白花采纳,获得10
13秒前
Jarvis发布了新的文献求助10
13秒前
姜起蛟发布了新的文献求助10
14秒前
14秒前
CodeCraft应助zxb采纳,获得10
15秒前
15秒前
西花海棠关注了科研通微信公众号
15秒前
16秒前
车幻梦完成签到,获得积分10
17秒前
17秒前
天天快乐应助qin123采纳,获得10
18秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153139
求助须知:如何正确求助?哪些是违规求助? 2804306
关于积分的说明 7858717
捐赠科研通 2462115
什么是DOI,文献DOI怎么找? 1310701
科研通“疑难数据库(出版商)”最低求助积分说明 629333
版权声明 601794