A New Multi-Objective Mixed-Discrete Particle Swarm Optimization Algorithm

数学优化 粒子群优化 水准点(测量) 多群优化 解算器 元启发式 计算机科学 萤火虫算法 最优化问题 趋同(经济学) 早熟收敛 算法 聚类分析 连续优化 多目标优化 数学 人工智能 大地测量学 经济增长 经济 地理
作者
Weiyang Tong,Souma Chowdhury,Achille Messac
标识
DOI:10.1115/detc2014-35572
摘要

Complex system design problems tend to be high dimensional and nonlinear, and also often involve multiple objectives and mixed-integer variables. Heuristic optimization algorithms have the potential to address the typical (if not most) characteristics of such complex problems. Among them, the Particle Swarm Optimization (PSO) algorithm has gained significant popularity due to its maturity and fast convergence abilities. This paper seeks to translate the unique benefits of PSO from solving typical continuous single-objective optimization problems to solving multi-objective mixed-discrete problems, which is a relatively new ground for PSO application. The previously developed Mixed-Discrete Particle Swarm Optimization (MDPSO) algorithm, which includes an exclusive diversity preservation technique to prevent premature particle clustering, has been shown to be a powerful single-objective solver for highly constrained MINLP problems. In this paper, we make fundamental advancements to the MDPSO algorithm, enabling it to solve challenging multi-objective problems with mixed-discrete design variables. In the velocity update equation, the explorative term is modified to point towards the non-dominated solution that is the closest to the corresponding particle (at any iteration). The fractional domain in the diversity preservation technique, which was previously defined in terms of a single global leader, is now applied to multiple global leaders in the intermediate Pareto front. The multi-objective MDPSO (MO-MDPSO) algorithm is tested using a suite of diverse benchmark problems and a disc-brake design problem. To illustrate the advantages of the new MO-MDPSO algorithm, the results are compared with those given by the popular Elitist Non-dominated Sorting Genetic Algorithm-II (NSGA-II).
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
体贴的如之完成签到,获得积分10
1秒前
CodeCraft应助既晓采纳,获得30
1秒前
李爱国应助缥缈的紫青采纳,获得10
1秒前
开兴发布了新的文献求助10
3秒前
大栗完成签到,获得积分10
7秒前
隐形曼青应助王怀樟采纳,获得10
7秒前
愤怒的小马完成签到,获得积分10
7秒前
8秒前
es完成签到,获得积分10
8秒前
爱啃大虾发布了新的文献求助10
8秒前
Lucas应助UUU采纳,获得10
9秒前
kc135完成签到,获得积分10
10秒前
12秒前
14秒前
乐仔发布了新的文献求助10
14秒前
cdercder应助果子采纳,获得20
14秒前
14秒前
15秒前
朱文韬完成签到,获得积分10
15秒前
16秒前
笨笨醉薇发布了新的文献求助10
16秒前
molinsky2006发布了新的文献求助10
17秒前
既晓发布了新的文献求助30
18秒前
高大冷菱完成签到 ,获得积分10
18秒前
20秒前
22秒前
22秒前
宋德宇发布了新的文献求助10
22秒前
Hello应助朱文韬采纳,获得10
22秒前
23秒前
super chan发布了新的文献求助10
23秒前
23秒前
慕青应助清秀初柳采纳,获得10
23秒前
24秒前
24秒前
包容若风发布了新的文献求助10
24秒前
心灵美悟空完成签到,获得积分20
25秒前
26秒前
科研通AI5应助paddi采纳,获得10
27秒前
fshadow发布了新的文献求助10
28秒前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Production Logging: Theoretical and Interpretive Elements 3000
Am Rande der Geschichte : mein Leben in China / Ruth Weiss 1500
CENTRAL BOOKS: A BRIEF HISTORY 1939 TO 1999 by Dave Cope 1000
J'AI COMBATTU POUR MAO // ANNA WANG 660
Izeltabart tapatansine - AdisInsight 600
Introduction to Comparative Public Administration Administrative Systems and Reforms in Europe, Third Edition 3rd edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3752547
求助须知:如何正确求助?哪些是违规求助? 3296091
关于积分的说明 10092821
捐赠科研通 3010979
什么是DOI,文献DOI怎么找? 1653508
邀请新用户注册赠送积分活动 788267
科研通“疑难数据库(出版商)”最低求助积分说明 752789