The relation between structural and functional connectivity patterns in complex brain networks

复杂网络 统计物理学 功能连接 节点(物理) 计算机科学 静息状态功能磁共振成像 系列(地层学) 神经科学 物理 心理学 生物 古生物学 量子力学 万维网
作者
Cornelis J. Stam,Elisabeth C.W. van Straaten,Edwin van Dellen,Prejaas Tewarie,Gaolang Gong,Arjan Hillebrand,J Meier,Piet Van Mieghem
出处
期刊:International Journal of Psychophysiology [Elsevier]
卷期号:103: 149-160 被引量:149
标识
DOI:10.1016/j.ijpsycho.2015.02.011
摘要

An important problem in systems neuroscience is the relation between complex structural and functional brain networks. Here we use simulations of a simple dynamic process based upon the susceptible-infected-susceptible (SIS) model of infection dynamics on an empirical structural brain network to investigate the extent to which the functional interactions between any two brain areas depend upon (i) the presence of a direct structural connection; and (ii) the degree product of the two areas in the structural network.For the structural brain network, we used a 78×78 matrix representing known anatomical connections between brain regions at the level of the AAL atlas (Gong et al., 2009). On this structural network we simulated brain dynamics using a model derived from the study of epidemic processes on networks. Analogous to the SIS model, each vertex/brain region could be in one of two states (inactive/active) with two parameters β and δ determining the transition probabilities. First, the phase transition between the fully inactive and partially active state was investigated as a function of β and δ. Second, the statistical interdependencies between time series of node states were determined (close to and far away from the critical state) with two measures: (i) functional connectivity based upon the correlation coefficient of integrated activation time series; and (ii) effective connectivity based upon conditional co-activation at different time intervals.We find a phase transition between an inactive and a partially active state for a critical ratio τ=β/δ of the transition rates in agreement with the theory of SIS models. Slightly above the critical threshold, node activity increases with degree, also in line with epidemic theory. The functional, but not the effective connectivity matrix closely resembled the underlying structural matrix. Both functional connectivity and, to a lesser extent, effective connectivity were higher for connected as compared to disconnected (i.e.: not directly connected) nodes. Effective connectivity scaled with the degree product. For functional connectivity, a weaker scaling relation was only observed for disconnected node pairs. For random networks with the same degree distribution as the original structural network, similar patterns were seen, but the scaling exponent was significantly decreased especially for effective connectivity.Even with a very simple dynamical model it can be shown that functional relations between nodes of a realistic anatomical network display clear patterns if the system is studied near the critical transition. The detailed nature of these patterns depends on the properties of the functional or effective connectivity measure that is used. While the strength of functional interactions between any two nodes clearly depends upon the presence or absence of a direct connection, this study has shown that the degree product of the nodes also plays a large role in explaining interaction strength, especially for disconnected nodes and in combination with an effective connectivity measure. The influence of degree product on node interaction strength probably reflects the presence of large numbers of indirect connections.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
绿洲完成签到,获得积分10
1秒前
1秒前
yf_zhu发布了新的文献求助10
1秒前
正直亦旋发布了新的文献求助10
1秒前
2秒前
华仔应助招财不肥采纳,获得10
2秒前
健康的梦曼完成签到 ,获得积分10
2秒前
最最最发布了新的文献求助10
2秒前
科研是什么鬼完成签到,获得积分10
4秒前
4秒前
5秒前
欢喜素阴完成签到 ,获得积分10
6秒前
yirenli完成签到,获得积分10
6秒前
希望天下0贩的0应助DAYTOY采纳,获得10
6秒前
狮子座完成签到,获得积分10
6秒前
爆米花应助润润轩轩采纳,获得10
6秒前
8秒前
熊boy完成签到,获得积分10
8秒前
1233完成签到,获得积分10
8秒前
Chang发布了新的文献求助10
8秒前
111222发布了新的文献求助50
8秒前
wxd发布了新的文献求助10
9秒前
上官若男应助浅笑采纳,获得10
10秒前
英姑应助Lxxixixi采纳,获得10
10秒前
斯文败类应助lichaoyes采纳,获得10
10秒前
aaaaa完成签到,获得积分10
10秒前
唉呦嘿发布了新的文献求助10
11秒前
共享精神应助迅速宛筠采纳,获得10
11秒前
上上谦应助酷炫过客采纳,获得10
11秒前
脑洞疼应助酷炫过客采纳,获得10
12秒前
千幻发布了新的文献求助10
12秒前
12秒前
13秒前
英俊的铭应助俎树同采纳,获得10
14秒前
14秒前
liyiren完成签到,获得积分10
15秒前
15秒前
k7完成签到,获得积分10
15秒前
bc发布了新的文献求助10
15秒前
cui123完成签到 ,获得积分10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527742
求助须知:如何正确求助?哪些是违规求助? 3107867
关于积分的说明 9286956
捐赠科研通 2805612
什么是DOI,文献DOI怎么找? 1540026
邀请新用户注册赠送积分活动 716884
科研通“疑难数据库(出版商)”最低求助积分说明 709762