各向同性
模数
弹性模量
同种类的
线弹性
各向同性固体
相(物质)
张量(固有定义)
上下界
数学分析
材料科学
数学
弹性(物理)
物理
几何学
热力学
复合材料
有限元法
光学
组合数学
量子力学
作者
Zvi Hashin,S. Shtrikman
标识
DOI:10.1016/0022-5096(63)90060-7
摘要
Variational principles in the linear theory of elasticity, involving the elastic polarization tensor, have been applied to the derivation of upper and lower bounds for the effective elastic moduli of quasi-isotropic and quasi-homogeneous multiphase materials of arbitrary phase geometry. When the ratios between the different phase moduli are not too large the bounds derived are close enough to provide a good estimate for the effective moduli. Comparison of theoretical and experimental results for a two-phase alloy showed good agreement.
科研通智能强力驱动
Strongly Powered by AbleSci AI