Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures

等离子体子 纳米传感器 纳米技术 材料科学 分子 拉曼光谱 表面增强拉曼光谱 生物分子 拉曼散射 化学 光电子学 物理 光学 有机化学
作者
Francesco De Angelis,Francesco Gentile,Federico Mecarini,Gobind Das,Manola Moretti,Patrizio Candeloro,Maria Laura Coluccio,Gheorghe Cojoc,Angelo Accardo,Carlo Liberale,Remo Proietti Zaccaria,Gerardo Perozziello,Luca Tirinato,Andréa Toma,Giovanni Cuda,R. Cingolani,Enzo Di Fabrizio
出处
期刊:Nature Photonics [Springer Nature]
卷期号:5 (11): 682-687 被引量:678
标识
DOI:10.1038/nphoton.2011.222
摘要

The detection of a few molecules in a highly diluted solution is of paramount interest in fields including biomedicine, safety and eco-pollution in relation to rare and dangerous chemicals. Nanosensors based on plasmonics are promising devices in this regard, in that they combine the features of high sensitivity, label-free detection and miniaturization. However, plasmonic-based nanosensors, in common with general sensors with sensitive areas on the scale of nanometres, cannot be used directly to detect molecules dissolved in femto- or attomolar solutions. In other words, they are diffusion-limited and their detection times become impractical at such concentrations. In this Article, we demonstrate, by combining super-hydrophobic artificial surfaces and nanoplasmonic structures, that few molecules can be localized and detected even at attomolar (10−18 mol l−1) concentration. Moreover, the detection can be combined with fluorescence and Raman spectroscopy, such that the chemical signature of the molecules can be clearly determined. Surface-enhanced Raman sensors often rely on random chance for molecules to come near optical hotspots. Here, researchers use super-hydrophobic artificial surfaces and evaporation to direct molecules to plasmonic light-focusing structures. Molecules can be localized and detected even at attomolar concentrations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
怡然诗翠完成签到,获得积分20
1秒前
1秒前
1秒前
dywen完成签到,获得积分10
1秒前
执着谷梦发布了新的文献求助10
2秒前
2秒前
科研通AI2S应助谨慎从露采纳,获得10
2秒前
CodeCraft应助影子1127采纳,获得10
2秒前
星辰大海应助科研通管家采纳,获得10
3秒前
SciGPT应助科研通管家采纳,获得10
3秒前
谢雨嘉完成签到 ,获得积分10
4秒前
4秒前
烟花应助DE2022采纳,获得10
4秒前
顾矜应助科研通管家采纳,获得30
4秒前
小二郎应助科研通管家采纳,获得10
4秒前
852应助科研通管家采纳,获得10
4秒前
Orange应助科研通管家采纳,获得10
4秒前
pluto应助科研通管家采纳,获得10
4秒前
泥巴完成签到,获得积分10
4秒前
ZQP发布了新的文献求助10
4秒前
4秒前
毛豆应助科研通管家采纳,获得10
4秒前
伶俐从筠应助科研通管家采纳,获得10
4秒前
Billy应助科研通管家采纳,获得30
4秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
科研通AI2S应助科研通管家采纳,获得10
5秒前
顾矜应助科研通管家采纳,获得10
5秒前
英姑应助科研通管家采纳,获得10
5秒前
mhl11应助科研通管家采纳,获得50
5秒前
隐形曼青应助科研通管家采纳,获得10
5秒前
小黑超努力完成签到,获得积分10
5秒前
搜集达人应助科研通管家采纳,获得10
5秒前
李爱国应助杨旸采纳,获得10
6秒前
栀璃鸳挽发布了新的文献求助10
6秒前
kano发布了新的文献求助10
7秒前
bazinga应助ZQP采纳,获得10
8秒前
ljj001ljj发布了新的文献求助10
9秒前
霍思佳发布了新的文献求助10
9秒前
科研狂徒完成签到,获得积分10
9秒前
科研通AI2S应助Bi8bo采纳,获得10
9秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 1800
How Maoism Was Made: Reconstructing China, 1949-1965 800
Barge Mooring (Oilfield Seamanship Series Volume 6) 600
Medical technology industry in China 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3312474
求助须知:如何正确求助?哪些是违规求助? 2945127
关于积分的说明 8523062
捐赠科研通 2620847
什么是DOI,文献DOI怎么找? 1433151
科研通“疑难数据库(出版商)”最低求助积分说明 664881
邀请新用户注册赠送积分活动 650255