小角X射线散射
材料科学
散射
临界尺寸
小角度散射
微电子
光学
氮化物
光电子学
纳米技术
物理
图层(电子)
作者
Charles Settens,Benjamin Bunday,B. L. Thiel,R. Joseph Kline,Daniel F. Sunday,Xiaogang Wang,Wen‐Li Wu,R. J. Matyi
摘要
We have demonstrated that transmission critical dimension small angle X-ray scattering (CD-SAXS) provides high accuracy and precision CD measurements on advanced 3D microelectronic architectures. The competitive advantage of CD-SAXS over current 3D metrology methods such as optical scatterometry is that CD-SAXS is able to decouple and fit cross-section parameters without any significant parameter cross-correlations. As the industry aggressively scales beyond the 22 nm node, CD-SAXS can be used to quantitatively measure nanoscale deviations in the average crosssections of FinFETs and high-aspect ratio (HAR) memory devices. Fitting the average cross-section of 18:1 isolated HAR contact holes with an effective trapezoid model yielded an average pitch of 796.9 ± 0.4 nm, top diameter of 70.3 ± 0.9 nm, height of 1088 ± 4 nm, and sidewall angle below 0.1°. Simulations of dense 40:1 HAR contact holes and FinFET fin-gate crossbar structures have been analyzed using CD-SAXS to inquire the theoretical precision of the technique to measure important process parameters such as fin CD, height, and sidewall angle; BOX etch recess, thickness of hafnium oxide and titanium nitride layers; gate CD, height, and sidewall angle; and hafnium oxide and titanium nitride etch recess. The simulations of HAR and FinFET structures mimic the characteristics of experimental data collected at a synchrotron x-ray source. Using the CD-SAXS simulator, we estimate the measurement capabilities for smaller similar structures expected at future nodes to predict the applicability of this technique to fulfill important CD metrology needs.
科研通智能强力驱动
Strongly Powered by AbleSci AI