Classification models for CYP450 3A4 inhibitors and non-inhibitors.

CYP3A4型 化学 药理学 药物发现 药效团 药品 对接(动物) 酶抑制剂 生物信息学 虚拟筛选 孕烷X受体 计算生物学 IC50型
作者
Inhee Choi,Sun-Young Kim,Hanjo Kim,Nam Sook Kang,Myung Ae Bae,Seung Eun Yoo,Jihoon Jung,Kyoung Tai No
出处
期刊:European Journal of Medicinal Chemistry 卷期号:44 (6): 2354-2360 被引量:21
标识
DOI:10.1016/j.ejmech.2008.08.013
摘要

Cytochrome P450 3A4 (CYP3A4) is the predominant enzyme involved in the oxidative metabolic pathways of many drugs. The inhibition of this enzyme in many cases leads to an undesired accumulation of the administered therapeutic agent. The purpose of this study is to develop in silico model that can effectively distinguish human CYP3A4 inhibitors from non-inhibitors. Structural diversity of the drug-like compounds CYP3A4 inhibitors and non-inhibitors was obtained from Fujitsu Database and Korea Research Institute of Chemical Technology (KRICT) as training and test sets, respectively. Recursive Partitioning (RP) method was introduced for the classification of inhibitor and non-inhibitor of CYP3A4 because it is an easy and quick classification method to implement. The 2D molecular descriptors were used to classify the compounds into respective inhibitors and non-inhibitors by calculation of the physicochemical properties of CYP3A4 inhibitors such as molecular weights and fractions of 2D VSA chargeable groups. The RP tree model reached 72.33% of accuracy and exceeded this percentage for the sensitivity (75.82%) parameter. This model is further validated by the test set where both accuracy and sensitivity were 72.58% and 82.64%, respectively. The accuracy of the random forest model was increased to 73.8%. The 2D descriptors sufficiently represented the molecular features of CYP3A4 inhibitors. Our model can be used for the prediction of either CYP3A4 inhibitors or non-inhibitors in the early stages of the drug discovery process.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
兴奋白枫发布了新的文献求助10
2秒前
寒食应助深情的阿宇采纳,获得30
2秒前
我是站长才怪应助corazon采纳,获得10
2秒前
gghh完成签到,获得积分10
3秒前
无名完成签到 ,获得积分10
3秒前
LZH完成签到 ,获得积分10
4秒前
monere应助月白lala采纳,获得20
5秒前
5秒前
Yuuki完成签到,获得积分10
6秒前
研友_VZG7GZ应助linnnn采纳,获得10
6秒前
7秒前
无名关注了科研通微信公众号
7秒前
巫马夜安完成签到,获得积分10
10秒前
10秒前
10秒前
zhou发布了新的文献求助10
10秒前
泡面小猪完成签到,获得积分10
10秒前
酷波er应助清新的宛儿采纳,获得10
11秒前
11秒前
SHAN发布了新的文献求助10
12秒前
劲秉应助超级白昼采纳,获得10
13秒前
司空晓山发布了新的文献求助10
14秒前
14秒前
wanci应助baolongzhan采纳,获得10
14秒前
兴奋棒球完成签到,获得积分10
14秒前
Akim应助cloud采纳,获得10
14秒前
丘比特应助Creamai采纳,获得10
15秒前
偏偏海发布了新的文献求助10
15秒前
徐丹枫发布了新的文献求助10
16秒前
霸气的惜天完成签到,获得积分10
18秒前
18秒前
欣欣儿完成签到 ,获得积分10
18秒前
霸气夏旋完成签到 ,获得积分10
20秒前
21秒前
情怀应助呓语采纳,获得10
22秒前
chankaka完成签到,获得积分20
22秒前
李lll发布了新的文献求助10
22秒前
24秒前
OliverW完成签到,获得积分10
25秒前
25秒前
高分求助中
Rock-Forming Minerals, Volume 3C, Sheet Silicates: Clay Minerals 2000
The late Devonian Standard Conodont Zonation 2000
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Very-high-order BVD Schemes Using β-variable THINC Method 930
The Healthy Socialist Life in Maoist China 600
Development of general formulas for bolted flanges, by E.O. Waters [and others] 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3266784
求助须知:如何正确求助?哪些是违规求助? 2906482
关于积分的说明 8338026
捐赠科研通 2576794
什么是DOI,文献DOI怎么找? 1400728
科研通“疑难数据库(出版商)”最低求助积分说明 654929
邀请新用户注册赠送积分活动 633810