堆积
六方氮化硼
微扰理论(量子力学)
从头算
密度泛函理论
材料科学
双层
凝聚态物理
从头算量子化学方法
色散(光学)
Atom(片上系统)
氮化硼
分子物理学
结晶学
计算化学
物理
纳米技术
化学
分子
量子力学
石墨烯
膜
核磁共振
计算机科学
嵌入式系统
生物化学
作者
Gabriel C. Constantinescu,Agnieszka Kuc,Thomas Heine
标识
DOI:10.1103/physrevlett.111.036104
摘要
The stacking orders in layered hexagonal boron nitride bulk and bilayers are studied using high-level ab initio theory [local second-order M\o{}ller-Plesset perturbation theory (LMP2)]. Our results show that both electrostatic and London dispersion interactions are responsible for interlayer distance and stacking order, with $A{A}^{\ensuremath{'}}$ being the most stable one. The minimum energy sliding path includes only the $A{A}^{\ensuremath{'}}$ high-symmetry stacking, and the energy barrier is 3.4 meV per atom for the bilayer. State-of-the-art density functionals with and without London dispersion correction fail to correctly describe the interlayer energies with the exception of a Perdew-Burke-Ernzerhof functional intended for solid state and surface systems that agrees very well with our LMP2 results and experiment.
科研通智能强力驱动
Strongly Powered by AbleSci AI