Applying empirical methods in site classification, using response spectral ratio (H/V): A case study on Iranian strong motion network (ISMN)

钻孔 实证研究 剪切(地质) 地质学 经验模型 数学 数据挖掘 统计 遥感 计算机科学 岩土工程 模拟 岩石学
作者
Hadi Ghasemi,Mehdi Zaré,Yoshimitsu Fukushima,F. Sinaeian
出处
期刊:Soil Dynamics and Earthquake Engineering [Elsevier]
卷期号:29 (1): 121-132 被引量:82
标识
DOI:10.1016/j.soildyn.2008.01.007
摘要

Shear wave velocity, measured recently at 107 strong motion stations, is a new empirical basis in the applicability investigation of empirical classification techniques. These stations are classified considering Iranian Practice Code criteria (Standard 2800). To check the applicability of empirical methods, three different empirical techniques are applied to re-classify the stations using previously determined site classes. The first method is based only on the determination of peak periods at each station. It is found that the fundamental periods in different site categories are within the ranges proposed by Japanese Road Association. The second one is upon the site classification index (SI), suggested by Zhao et al. In this study, a new site index term is proposed for quantitative site classification using the empirical H/V spectral ratio (here after HVRS) method. It is shown that the results from this scheme are comparable with those obtained by applying the method of Zhao et al. and are more reliable than the results from using only peak periods. A large number of strong motion stations are classified in Iran for more control of proposed SI applicability. The mean response spectral ratio curves for all data of ISMN stations are found to be fairly consistent with those obtained by Zhao et al. The results show the practicability and efficiency of the proposed method in site classification. However, more shear wave measurements and further information, like surface geology, borehole data etc., are still needed to clarify the uncertainties of such empirical schemes.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
aaaaa发布了新的文献求助10
刚刚
搞怪路灯发布了新的文献求助10
1秒前
脑洞疼应助天气晴朗采纳,获得10
1秒前
1秒前
Eden发布了新的文献求助10
1秒前
幸福小猫发布了新的文献求助10
1秒前
简单平蓝完成签到,获得积分10
2秒前
2秒前
无糖加冰完成签到,获得积分10
2秒前
shenzhou9完成签到,获得积分10
2秒前
dgbsw完成签到,获得积分10
2秒前
柚柚发布了新的文献求助10
3秒前
3秒前
sherry完成签到,获得积分20
3秒前
3秒前
一杯半茶完成签到,获得积分10
3秒前
3秒前
彭于晏应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
科研通AI6应助科研通管家采纳,获得10
3秒前
bkagyin应助文艺的从波采纳,获得10
4秒前
霞子发布了新的文献求助10
4秒前
星辰大海应助科研通管家采纳,获得10
4秒前
4秒前
光热效应发布了新的文献求助10
4秒前
科研通AI6应助科研通管家采纳,获得10
4秒前
爱听歌时光完成签到,获得积分10
4秒前
4秒前
小陈同学应助科研通管家采纳,获得10
4秒前
SciGPT应助韩保晨采纳,获得10
4秒前
Lucas应助科研通管家采纳,获得10
4秒前
英姑应助xixi采纳,获得10
4秒前
4秒前
大模型应助科研通管家采纳,获得10
4秒前
田様应助hh采纳,获得10
4秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
科研通AI6应助科研通管家采纳,获得10
5秒前
星辰大海应助科研通管家采纳,获得10
5秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5668030
求助须知:如何正确求助?哪些是违规求助? 4889242
关于积分的说明 15123064
捐赠科研通 4826923
什么是DOI,文献DOI怎么找? 2584432
邀请新用户注册赠送积分活动 1538259
关于科研通互助平台的介绍 1496590