Pathologist-level classification of histologic patterns on resected lung adenocarcinoma slides with deep neural networks

腺癌 卷积神经网络 卡帕 人工智能 医学 病理 外科病理学 集合(抽象数据类型) 任务(项目管理) 放射科 计算机科学 模式识别(心理学) 癌症 内科学 哲学 经济 管理 程序设计语言 语言学
作者
Jason Zhanshun Wei,Laura J. Tafe,Yevgeniy A. Linnik,Louis J. Vaickus,Naofumi Tomita,Saeed Hassanpour
出处
期刊:Scientific Reports [Nature Portfolio]
卷期号:9 (1) 被引量:150
标识
DOI:10.1038/s41598-019-40041-7
摘要

Abstract Classification of histologic patterns in lung adenocarcinoma is critical for determining tumor grade and treatment for patients. However, this task is often challenging due to the heterogeneous nature of lung adenocarcinoma and the subjective criteria for evaluation. In this study, we propose a deep learning model that automatically classifies the histologic patterns of lung adenocarcinoma on surgical resection slides. Our model uses a convolutional neural network to identify regions of neoplastic cells, then aggregates those classifications to infer predominant and minor histologic patterns for any given whole-slide image. We evaluated our model on an independent set of 143 whole-slide images. It achieved a kappa score of 0.525 and an agreement of 66.6% with three pathologists for classifying the predominant patterns, slightly higher than the inter-pathologist kappa score of 0.485 and agreement of 62.7% on this test set. All evaluation metrics for our model and the three pathologists were within 95% confidence intervals of agreement. If confirmed in clinical practice, our model can assist pathologists in improving classification of lung adenocarcinoma patterns by automatically pre-screening and highlighting cancerous regions prior to review. Our approach can be generalized to any whole-slide image classification task, and code is made publicly available at https://github.com/BMIRDS/deepslide .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
李爱国应助神雕001采纳,获得10
刚刚
2秒前
2秒前
小雨完成签到,获得积分10
2秒前
2秒前
搜集达人应助HH采纳,获得10
3秒前
soso发布了新的文献求助10
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
Owen应助兔孖采纳,获得10
3秒前
4秒前
chenyun完成签到,获得积分10
4秒前
ccc关闭了ccc文献求助
4秒前
Czt发布了新的文献求助10
4秒前
wanci应助知性的奎采纳,获得10
5秒前
5秒前
5秒前
个性严青发布了新的文献求助10
6秒前
7秒前
ke发布了新的文献求助10
7秒前
赘婿应助冯俊驰采纳,获得10
8秒前
袁江堰完成签到 ,获得积分10
8秒前
Crisp完成签到,获得积分10
10秒前
11秒前
alili完成签到,获得积分10
11秒前
hua发布了新的文献求助10
11秒前
12秒前
13秒前
ha发布了新的文献求助10
14秒前
七彩光完成签到,获得积分10
15秒前
17秒前
renhongan关注了科研通微信公众号
17秒前
李雪婷发布了新的文献求助10
17秒前
17秒前
程哈哈发布了新的文献求助30
19秒前
所所应助大佬求文献采纳,获得30
19秒前
23秒前
ding应助樱岛流京子采纳,获得10
23秒前
Suzzne完成签到,获得积分10
25秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
NMR in Plants and Soils: New Developments in Time-domain NMR and Imaging 600
Physical Chemistry: How Chemistry Works 500
SOLUTIONS Adhesive restoration techniques restorative and integrated surgical procedures 500
Energy-Size Reduction Relationships In Comminution 500
Principles Of Comminution, I-Size Distribution And Surface Calculations 500
Cowries - A Guide to the Gastropod Family Cypraeidae. Volume 2: Shells and Animals 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4950964
求助须知:如何正确求助?哪些是违规求助? 4213785
关于积分的说明 13105631
捐赠科研通 3995556
什么是DOI,文献DOI怎么找? 2186991
邀请新用户注册赠送积分活动 1202197
关于科研通互助平台的介绍 1115436