索波列夫空间
自由度(物理和化学)
数学
功能(生物学)
维数(图论)
空格(标点符号)
订单(交换)
非线性系统
数学分析
热方程
纯数学
物理
语言学
哲学
财务
量子力学
进化生物学
经济
生物
作者
Van Tien Nguyen,Hatem Zaag
出处
期刊:Annales Scientifiques De L Ecole Normale Superieure
[Societe Mathematique de France]
日期:2017-01-01
卷期号:50 (5): 1241-1282
被引量:3
摘要
We refine the asymptotic behavior of solutions to the semilinear heat equation with Sobolev subcritical power nonlinearity which blow up in some finite time at a blow-up point where the (supposed to be generic) profile holds. In order to obtain this refinement, we have to abandon the explicit profile function as a first order approximation, and take a non explicit function as a first order description of the singular behavior. This non explicit function is in fact a special solution which we construct, obeying some refined prescribed behavior. The construction relies on the reduction of the problem to a finite dimensional one and the use of a topological argument based on index theory to conclude. Surprisingly, the new non explicit profiles which we construct make a family with finite degrees of freedom, namely $\frac{(N+1)N}{2}$ if $N$ is the dimension of the space.
科研通智能强力驱动
Strongly Powered by AbleSci AI