Engineering the trap effect of residual oxygen atoms and defects in hard carbon anode towards high initial Coulombic efficiency

法拉第效率 阳极 材料科学 存水弯(水管) 残余物 碳纤维 析氧 氧气 化学工程 电极 纳米技术 工程物理 电化学 复合材料 化学 有机化学 物理化学 工程类 复合数 算法 环境工程 计算机科学
作者
Dan Sun,Bin Luo,Haiyan Wang,Yougen Tang,Xiaobo Ji,Lianzhou Wang
出处
期刊:Nano Energy [Elsevier]
卷期号:64: 103937-103937 被引量:247
标识
DOI:10.1016/j.nanoen.2019.103937
摘要

Hard carbon is a promising anode candidate for lithium/sodium ion batteries due to the key features of low operation potential and low cost, but its practical utilization is hindered by a challenging issue of poor initial Coulombic efficiency (ICE), which has not been understood well and resolved properly. Herein, we report a new in-situ engineering approach to deliberately tune the residual oxygen atoms/defects of hard carbon by controlling the atmosphere of pyrolysis synthesis process and reveal important correlations between the ICE and residual oxygen atoms/defects. When used as an anode in sodium ion battery, the hard carbon electrode with reduced residual oxygen atoms and defects can achieve a high average ICE above 85%, which is considerably higher than the commonly observed ~70% and ~30% ICE values for pristine and acid treated hard carbon electrodes. Encouragingly, a high reversible capacity of 310 mAh g−1 with good cycling stability (93% after 100 cycles) is demonstrated at a current density of 20 mA g−1. The density functional theory (DFT) calculation and experimental results reveal that the trap effects of residual oxygen atoms and defects on Na+ are the key factors that impact the ICE of the hard carbon electrode. When the hard carbon is coupled with Na3V2(PO4)2F3 cathode to form a sodium ion full cell, the battery delivers an impressively high energy density of 239 Wh/kg (based on the active mass of anode and cathode without additives), which is among the best performing sodium ion full cells. This work not only provides an effective approach to engineer the heteroatoms and defects in carbon-based materials but also sheds light on the design principle of practical hard carbon electrodes.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
脑洞疼应助Newky采纳,获得10
2秒前
小二郎应助洛莫采纳,获得10
2秒前
斯文败类应助Lv采纳,获得10
2秒前
WangYZ发布了新的文献求助10
3秒前
上官若男应助cccc采纳,获得10
3秒前
洪云峰发布了新的文献求助10
3秒前
linmo完成签到,获得积分10
3秒前
3秒前
任我行发布了新的文献求助10
5秒前
隐形曼青应助dique3hao采纳,获得10
6秒前
linmo发布了新的文献求助10
6秒前
烟花应助风清扬采纳,获得10
7秒前
7秒前
方方方方方完成签到,获得积分10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
lw发布了新的文献求助10
9秒前
zaaa发布了新的文献求助30
10秒前
京城雪不落江南完成签到,获得积分10
10秒前
11秒前
11完成签到,获得积分10
12秒前
13秒前
ding应助xueshu采纳,获得10
14秒前
足下慵才完成签到,获得积分10
14秒前
Lv发布了新的文献求助10
14秒前
Sue完成签到 ,获得积分10
15秒前
脑洞疼应助哈哈采纳,获得10
15秒前
史超发布了新的文献求助10
16秒前
无极微光应助CCS采纳,获得20
17秒前
17秒前
ASDq发布了新的文献求助10
18秒前
koutianle完成签到 ,获得积分10
18秒前
烟花应助yu采纳,获得10
19秒前
量子星尘发布了新的文献求助20
19秒前
20秒前
20秒前
LUJL完成签到,获得积分10
20秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 9000
Encyclopedia of the Human Brain Second Edition 8000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5684488
求助须知:如何正确求助?哪些是违规求助? 5036727
关于积分的说明 15184287
捐赠科研通 4843754
什么是DOI,文献DOI怎么找? 2596869
邀请新用户注册赠送积分活动 1549511
关于科研通互助平台的介绍 1508027