Wind speed forecasting based on Quantile Regression Minimal Gated Memory Network and Kernel Density Estimation

风速 风力发电 分位数 核密度估计 随机性 概率预测 计算机科学 概率逻辑 概率密度函数 统计 人工智能 工程类 数学 气象学 物理 电气工程 估计员
作者
Zhendong Zhang,Hui Qin,Yongqi Liu,Liqiang Yao,Xiang Yu,Jiantao Lu,Zhiqiang Jiang,Zhong-kai Feng
出处
期刊:Energy Conversion and Management [Elsevier]
卷期号:196: 1395-1409 被引量:108
标识
DOI:10.1016/j.enconman.2019.06.024
摘要

As a renewable and clean energy, wind energy plays an important role in easing the increasingly serious energy crisis. However, due to the strong volatility and randomness of wind speed, large-scale integration of wind energy is limited. Therefore, obtaining reliable high-quality wind speed prediction is of great importance for the planning and application of wind energy. The purpose of this study is to develop a hybrid model for short-term wind speed forecasting and quantifying its uncertainty. In this study, Minimal Gated Memory Network is proposed to reduce the training time without significantly decreasing the prediction accuracy. Furthermore, a new hybrid method combining Quantile Regression and Minimal Gated Memory Network is proposed to predict conditional quantile of wind speed. Afterwards, Kernel Density Estimation method is used to estimate wind speed probabilistic density function according to these conditional quantiles of wind speed. In order to make the model show better performance, Maximal Information Coefficient is used to select the feature variables while Genetic Algorithm is used to obtain optimal feature combinations. Finally, the performance of the proposed model is verified by seven state-of-the-art models through four cases in Inner Mongolia, China from five aspects: point prediction accuracy, interval prediction suitability, probability prediction comprehensive performance, forecast reliability and training time. The experimental results show that the proposed model is able to obtain point prediction results with high accuracy, suitable prediction interval and probability distribution function with strong reliability in a relatively short time on the prediction problems of wind speed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助时倾采纳,获得10
1秒前
2秒前
ljw完成签到,获得积分20
2秒前
4秒前
5秒前
monthli完成签到,获得积分10
5秒前
5秒前
ljw发布了新的文献求助10
6秒前
毛豆应助XKINGLEE采纳,获得10
6秒前
温心完成签到,获得积分10
7秒前
7秒前
8秒前
9秒前
温心发布了新的文献求助10
9秒前
洁净山灵发布了新的文献求助10
11秒前
11秒前
zhh完成签到,获得积分10
14秒前
险胜完成签到,获得积分10
14秒前
cocolu应助科研通管家采纳,获得10
14秒前
Ava应助科研通管家采纳,获得10
14秒前
丰知然应助科研通管家采纳,获得10
15秒前
丰知然应助科研通管家采纳,获得10
15秒前
15秒前
科研通AI2S应助科研通管家采纳,获得10
15秒前
丰知然应助科研通管家采纳,获得10
15秒前
慕青应助科研通管家采纳,获得10
15秒前
15秒前
丰知然应助科研通管家采纳,获得10
15秒前
15秒前
李健应助科研通管家采纳,获得10
15秒前
酷波er应助科研通管家采纳,获得10
15秒前
丰知然应助科研通管家采纳,获得10
15秒前
丰知然应助科研通管家采纳,获得10
16秒前
16秒前
丰知然应助科研通管家采纳,获得10
16秒前
16秒前
Lucas应助科研通管家采纳,获得10
16秒前
丰知然应助科研通管家采纳,获得10
16秒前
cocolu应助科研通管家采纳,获得10
16秒前
情怀应助科研通管家采纳,获得10
16秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3308460
求助须知:如何正确求助?哪些是违规求助? 2941800
关于积分的说明 8505877
捐赠科研通 2616792
什么是DOI,文献DOI怎么找? 1429755
科研通“疑难数据库(出版商)”最低求助积分说明 663888
邀请新用户注册赠送积分活动 648999