神经生长因子IB
生物素化
核受体
细胞生物学
化学
转录因子
小异二聚体伴侣
细胞凋亡
链霉亲和素
生物
生物化学
生物素
基因
作者
Danmei Tian,Jia Qiao,Yiliang Bao,Jie Liu,Xiao-kun Zhang,Xue‐Long Sun,Youwei Zhang,Xin‐Sheng Yao,Jinshan Tang
标识
DOI:10.1016/j.bmcl.2019.01.015
摘要
The orphan nuclear receptor Nur77 (also known as TR3 or nerve growth factor-induced clone B NGFI-B) functions as a nuclear transcription factor in the regulation of target gene expression and plays a critical role in the regulation of differentiation, proliferation, apoptosis, and survival of many different cell types. Recent studies demonstrate that Nur77 also involves many important physiological and pathological processes including cancer, inflammation and immunity, cardiovascular diseases, and bone diseases. Our previous studies showed that cardiac glycosides could induce the expression of Nur77 protein and its translocation from the nucleus to the cytoplasm and subsequent targeting to mitochondria, leading to apoptosis of cancer cells. In order to probe the Nur77 protein inducting pathway, we designed and synthesized a series of novel biotinylated cardiac glycosides from β-Antiarin and α-Antiarin, two typical cardiac glycosides from the plant of Antiaris toxicaria. The induction of Nur77 protein expression of these biotinylated cardiac glycosides and their inhibitory effects on NIH-H460 cancer cell proliferation were evaluated. Results displayed that some biotinylated cardiac glycosides could significantly induce the expression of Nur77 protein comparable with their parent compounds β-Antiarin and α-Antiarin. Also, their streptavidin binding activities were evaluated. Among them, biotinylated cardiac glycosides P4b and P5a exhibited significant effect on the induction of Nur77 expression along with high binding capacity with streptavidin, suggesting that they can be used as probes for probing Nur77 protein inducting pathway.
科研通智能强力驱动
Strongly Powered by AbleSci AI