A Motor Current Signal-Based Bearing Fault Diagnosis Using Deep Learning and Information Fusion

方位(导航) 断层(地质) 卷积神经网络 保险丝(电气) 信号(编程语言) 计算机科学 人工神经网络 加速度计 特征提取 人工智能 机器学习 控制工程 模式识别(心理学) 工程类 电气工程 地质学 地震学 操作系统 程序设计语言
作者
Duy-Tang Hoang,Hee‐Jun Kang
出处
期刊:IEEE Transactions on Instrumentation and Measurement [Institute of Electrical and Electronics Engineers]
卷期号:69 (6): 3325-3333 被引量:264
标识
DOI:10.1109/tim.2019.2933119
摘要

Bearing fault diagnosis has extensively exploited vibration signals (VSs) because of their rich information about bearing health conditions. However, this approach is expensive because the measurement of VSs requires external accelerometers. Moreover, in machine systems that are inaccessible or unable to be installed in external sensors, the VS-based approach is impracticable. Otherwise, motor current signals (CSs) are easily measured by the inverters that are the available components of those systems. Therefore, the motor CS-based bearing fault diagnosis approach has attracted considerable attention from researchers. However, the performance of this approach is still not good as the VS-based approach, especially in the case of fault diagnosis for external bearings (the bearings that are installed outside of the electric motors). Accordingly, this article proposes a motor CS-based fault diagnosis method utilizing deep learning and information fusion (IF), which can be applied to external bearings in rotary machine systems. The proposed method uses raw signals from multiple phases of the motor current as direct input, and the features are extracted from the CSs of each phase. Then, each feature set is classified separately by a convolutional neural network (CNN). To enhance the classification accuracy, a novel decision-level IF technique is introduced to fuse information from all of the utilized CNNs. The problem of decision-level IF is transformed into a simple pattern classification task, which can be solved effectively by familiar supervised learning algorithms. The effectiveness of the proposed fault diagnosis method is verified through experiments carried out with actual bearing fault signals.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2秒前
丰富的听云完成签到,获得积分10
2秒前
3秒前
小学生的练习簿完成签到,获得积分10
3秒前
3秒前
...00发布了新的文献求助10
3秒前
3秒前
充电宝应助结实涑采纳,获得10
4秒前
lili完成签到,获得积分20
5秒前
小東完成签到,获得积分10
5秒前
蜂蜜柚子发布了新的文献求助10
5秒前
6秒前
8秒前
辛普森完成签到,获得积分10
9秒前
Gxx发布了新的文献求助10
10秒前
程与鱼发布了新的文献求助10
11秒前
11秒前
11秒前
CyrusSo524应助跳跃若风采纳,获得10
11秒前
丘比特应助舒适的太君采纳,获得10
12秒前
13秒前
蓝白啦发布了新的文献求助10
15秒前
斯文败类应助MT采纳,获得10
15秒前
15秒前
16秒前
英俊的铭应助从容的丹南采纳,获得10
16秒前
17秒前
充电宝应助Asiprinal采纳,获得10
18秒前
Suppose发布了新的文献求助10
18秒前
ZZZ完成签到,获得积分20
19秒前
19秒前
multimodal发布了新的文献求助10
20秒前
20秒前
认真土豆完成签到 ,获得积分10
22秒前
木禾完成签到,获得积分10
24秒前
共享精神应助程与鱼采纳,获得10
26秒前
ky幻影完成签到,获得积分10
26秒前
27秒前
希望天下0贩的0应助企鹅采纳,获得10
28秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555252
求助须知:如何正确求助?哪些是违规求助? 3130871
关于积分的说明 9389097
捐赠科研通 2830384
什么是DOI,文献DOI怎么找? 1555991
邀请新用户注册赠送积分活动 726370
科研通“疑难数据库(出版商)”最低求助积分说明 715737