Revised European Scleroderma Trials and Research Group Activity Index is the best predictor of short-term severity accrual

医学 硬皮病(真菌) 内科学 索引(排版) 增加物 期限(时间) 重症监护医学 病理 计算机科学 量子力学 物理 会计 万维网 业务 接种 收益
作者
Serena Fasano,Antonella Riccardi,Valentina Messiniti,Paola Caramaschi,Edoardo Rosato,Britta Maurer,Vanessa Smith,Elise Siegert,Ellen De Langhe,Valeria Riccieri,Paolo Airò,Carina Mihai,Jérôme Avouac,Elisabetta Zanatta,Ulrich A. Walker,Florenzo Iannone,Paloma García de la Peña Lefebvre,Jörg H W Distler,Alessandra Vacca,Oliver Distler,Otylia Kowal‐Bielecka,Yannick Allanore,Gabriele Valentini
出处
期刊:Annals of the Rheumatic Diseases [BMJ]
卷期号:78 (12): 1681-1685 被引量:13
标识
DOI:10.1136/annrheumdis-2019-215787
摘要

Background The European Scleroderma Trials and Research Group (EUSTAR) recently developed a preliminarily revised activity index (AI) that performed better than the European Scleroderma Study Group Activity Index (EScSG-AI) in systemic sclerosis (SSc). Objective To assess the predictive value for short-term disease severity accrual of the EUSTAR-AI, as compared with those of the EScSG-AI and of known adverse prognostic factors. Methods Patients with SSc from the EUSTAR database with a disease duration from the onset of the first non-Raynaud sign/symptom ≤5 years and a baseline visit between 2003 and 2014 were first extracted. To capture the disease activity variations over time, EUSTAR-AI and EScSG-AI adjusted means were calculated. The primary outcome was disease progression defined as a Δ≥1 in the Medsger’s severity score and in distinct items at the 2-year follow-up visit. Logistic regression analysis was carried out to identify predictive factors. Results 549 patients were enrolled. At multivariate analysis, the EUSTAR-AI adjusted mean was the only predictor of any severity accrual and of that of lung and heart, skin and peripheral vascular disease over 2 years. Conclusion The adjusted mean EUSTAR-AI has the best predictive value for disease progression and development of severe organ involvement over time in SSc.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
乐乐应助无私迎海采纳,获得10
刚刚
7十七发布了新的文献求助10
刚刚
xxxllllll完成签到,获得积分10
1秒前
橘子海发布了新的文献求助10
1秒前
lycoris发布了新的文献求助200
1秒前
2秒前
雨桐完成签到,获得积分10
2秒前
机灵的啤酒完成签到 ,获得积分10
3秒前
李小政发布了新的文献求助10
4秒前
小蓝人发布了新的文献求助10
5秒前
在水一方应助体贴的延恶采纳,获得20
6秒前
6秒前
dev-evo发布了新的文献求助10
7秒前
luckbee完成签到,获得积分10
8秒前
靜心发布了新的文献求助10
10秒前
CRT完成签到,获得积分20
11秒前
慕青应助蓝蔚蓝采纳,获得50
11秒前
CipherSage应助13sdsf采纳,获得10
13秒前
橘子海完成签到,获得积分10
13秒前
赵坤煊完成签到 ,获得积分10
15秒前
CRT发布了新的文献求助10
15秒前
Yziii应助ACE采纳,获得10
17秒前
深情安青应助abc123采纳,获得10
17秒前
tanjianxin发布了新的文献求助50
19秒前
在水一方应助顺利毕业采纳,获得10
19秒前
唐擎汉完成签到,获得积分10
20秒前
CipherSage应助Ali采纳,获得10
20秒前
邓海霞完成签到,获得积分10
22秒前
李真完成签到 ,获得积分10
23秒前
annabel发布了新的文献求助10
23秒前
23秒前
24秒前
薰硝壤应助Cookie采纳,获得30
25秒前
25秒前
cpuwy发布了新的文献求助20
25秒前
Ava应助阳光下的味道采纳,获得10
26秒前
达拉崩吧完成签到,获得积分10
26秒前
26秒前
28秒前
高分求助中
Shape Determination of Large Sedimental Rock Fragments 2000
Sustainability in Tides Chemistry 2000
Wirkstoffdesign 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3128715
求助须知:如何正确求助?哪些是违规求助? 2779520
关于积分的说明 7743611
捐赠科研通 2434839
什么是DOI,文献DOI怎么找? 1293652
科研通“疑难数据库(出版商)”最低求助积分说明 623388
版权声明 600514