Fabrication of Stable and Flexible Nanocomposite Membranes Comprised of Cellulose Nanofibers and Graphene Oxide for Nanofluidic Ion Transport

石墨烯 材料科学 纳米技术 纳米纤维 电解质 纳米复合材料 氧化物 质子输运 离子键合 静电纺丝 化学工程 离子运输机 离子 化学 电极 复合材料 聚合物 有机化学 生物化学 物理化学 工程类 冶金
作者
Changshun Wang,Changzong Miao,Xingzhong Zhu,Xiaoqin Feng,Chengchao Hu,Denghu Wei,Yan Zhu,Caixia Kan,Daning Shi,Shunsheng Chen
出处
期刊:ACS applied nano materials [American Chemical Society]
卷期号:2 (7): 4193-4202 被引量:29
标识
DOI:10.1021/acsanm.9b00652
摘要

Two-dimensional membranes with nanofluidic channels and a high chemical stability are strongly needed in many practical applications. We present a facile vacuum filtration method to fabricate a lamellar hybrid microstructure with cellulose nanofibers and graphene oxide sheets. The flexible and free-standing composite membrane obtained has uniformly distributed interstitial voids that provide nanofluidic channels for ion transport. The systematic measurement of the ionic currents through the nanofluidic channels with various electrolytes at different concentrations establish the surface-charge-governed ion-transport behavior. The ionic conductivity through the nanofluidic channels at lower concentrations (≤10–4 M) can be enhanced by several orders of magnitude and appears to be independent of the concentration of the bulk electrolytes because of the successful hybridization of the negatively charged and permselective nanochannels. The resulting devices have an excellent chemical stability and maintain a stable ionic conductivity even after immersion in basic or acidic solutions at high concentrations (1 M) for half a month. Moreover, the activation energy and proton mobility provide additional confirmations that the hybrid nanofluidic channels lower the energy barrier for ion transport. The excellent performance of the membrane makes it an outstanding candidate for stable and flexible nanofluidic devices as well as other potential applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
fdu_sf发布了新的文献求助10
1秒前
大吧唧完成签到,获得积分10
2秒前
Cuikangjie发布了新的文献求助10
2秒前
3秒前
柠栀发布了新的文献求助10
3秒前
忘响关注了科研通微信公众号
3秒前
橙子完成签到,获得积分10
4秒前
4秒前
胡振宁完成签到 ,获得积分10
4秒前
隐形曼青应助tang采纳,获得10
5秒前
5秒前
5秒前
5秒前
Orange应助123采纳,获得10
6秒前
7秒前
8秒前
lilili应助晚宁采纳,获得10
8秒前
Ava应助橙子采纳,获得10
8秒前
感性的若冰完成签到 ,获得积分10
8秒前
居家家发布了新的文献求助10
11秒前
CipherSage应助Ahui采纳,获得10
11秒前
床头经济学完成签到,获得积分10
11秒前
蔡博颖发布了新的文献求助10
12秒前
赘婿应助可靠的墨镜采纳,获得10
12秒前
13秒前
14秒前
16秒前
16秒前
顺利的飞荷完成签到,获得积分0
17秒前
CipherSage应助wtt采纳,获得10
17秒前
华仔应助fdu_sf采纳,获得10
17秒前
yy发布了新的文献求助10
18秒前
cuckoo发布了新的文献求助10
19秒前
19秒前
20秒前
科研通AI6应助标致凝莲采纳,获得10
22秒前
22秒前
23秒前
xiaohua完成签到,获得积分10
23秒前
小晓俊发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
微纳米加工技术及其应用 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Vertebrate Palaeontology, 5th Edition 420
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5289499
求助须知:如何正确求助?哪些是违规求助? 4441106
关于积分的说明 13826460
捐赠科研通 4323436
什么是DOI,文献DOI怎么找? 2373207
邀请新用户注册赠送积分活动 1368606
关于科研通互助平台的介绍 1332493