A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes

校准 计算机科学 拉曼光谱 生物制药 生物系统 人工智能 机器学习 过程分析技术 生化工程 工艺工程 工程类 数学 生物技术 在制品 统计 物理 运营管理 光学 生物
作者
Aditya Tulsyan,Gregg Schorner,Hamid Khodabandehlou,Tony Wang,Myra Coufal,Cenk Ündey
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:116 (10): 2575-2586 被引量:57
标识
DOI:10.1002/bit.27100
摘要

The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real-time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine-learning procedure based on just-in-time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL-based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL-based generic models is demonstrated on several validation studies involving real-time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors' knowledge have not been done before.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
活泼的菱zi完成签到,获得积分10
刚刚
1秒前
jeonghan完成签到,获得积分10
1秒前
嘞是举仔发布了新的文献求助10
2秒前
2秒前
2秒前
Zer0完成签到,获得积分10
2秒前
gqy发布了新的文献求助10
2秒前
2秒前
Owen应助雨诺采纳,获得10
3秒前
小蘑菇应助xyuyulul采纳,获得10
3秒前
xxx完成签到,获得积分10
4秒前
Hello应助Destiny采纳,获得10
4秒前
汉堡包应助小凯采纳,获得10
5秒前
量子星尘发布了新的文献求助10
5秒前
jeonghan发布了新的文献求助10
6秒前
霹雳蜗牛发布了新的文献求助10
6秒前
北木南发布了新的文献求助10
7秒前
7秒前
刘子田发布了新的文献求助10
8秒前
左右发布了新的文献求助10
10秒前
11秒前
12秒前
13秒前
迷路曼雁发布了新的文献求助10
14秒前
实力与幸运并存完成签到,获得积分10
14秒前
眠羊发布了新的文献求助10
17秒前
FK7发布了新的文献求助10
17秒前
17秒前
18秒前
20秒前
20秒前
21秒前
蒜香生蚝完成签到 ,获得积分20
21秒前
huxi完成签到 ,获得积分10
22秒前
23秒前
23秒前
FK7完成签到,获得积分10
24秒前
菠萝吹雪发布了新的文献求助10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5633094
求助须知:如何正确求助?哪些是违规求助? 4728561
关于积分的说明 14985128
捐赠科研通 4791070
什么是DOI,文献DOI怎么找? 2558755
邀请新用户注册赠送积分活动 1519164
关于科研通互助平台的介绍 1479502