A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes

校准 计算机科学 拉曼光谱 生物制药 生物系统 人工智能 机器学习 过程分析技术 生化工程 工艺工程 工程类 数学 生物技术 在制品 物理 光学 统计 生物 运营管理
作者
Aditya Tulsyan,Gregg Schorner,Hamid Khodabandehlou,Tony Wang,Myra Coufal,Cenk Ündey
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:116 (10): 2575-2586 被引量:51
标识
DOI:10.1002/bit.27100
摘要

The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real-time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine-learning procedure based on just-in-time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL-based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL-based generic models is demonstrated on several validation studies involving real-time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors' knowledge have not been done before.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
SciGPT应助眼睛大的鑫磊采纳,获得10
1秒前
1秒前
Fareth完成签到,获得积分10
1秒前
领导范儿应助故意的绿竹采纳,获得10
1秒前
1秒前
复杂谷蓝完成签到 ,获得积分10
1秒前
2秒前
迟大猫应助于某人采纳,获得10
2秒前
qingkong发布了新的文献求助10
3秒前
3秒前
3秒前
细腻白柏完成签到,获得积分10
3秒前
3秒前
麦满分完成签到,获得积分10
4秒前
长度2到发布了新的文献求助10
4秒前
Alicia完成签到,获得积分10
5秒前
西瓜大虫完成签到,获得积分10
5秒前
害羞聋五发布了新的文献求助10
6秒前
prosperp完成签到,获得积分0
6秒前
Hongsong完成签到,获得积分20
6秒前
prosperp应助背侧丘脑采纳,获得10
7秒前
好好发布了新的文献求助10
7秒前
gaos发布了新的文献求助10
7秒前
einuo发布了新的文献求助10
8秒前
001完成签到,获得积分20
8秒前
李健应助阔达萧采纳,获得10
8秒前
陆离发布了新的文献求助10
8秒前
9秒前
66应助雪白红紫采纳,获得10
9秒前
英俊的铭应助东郭南松采纳,获得10
9秒前
YANG完成签到 ,获得积分10
10秒前
冷酷哈密瓜完成签到,获得积分10
11秒前
岁月流年完成签到,获得积分10
11秒前
11秒前
12秒前
8个老登发布了新的文献求助10
13秒前
douzi完成签到,获得积分10
13秒前
Li完成签到,获得积分10
13秒前
Macaco完成签到,获得积分10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527469
求助须知:如何正确求助?哪些是违规求助? 3107497
关于积分的说明 9285892
捐赠科研通 2805298
什么是DOI,文献DOI怎么找? 1539865
邀请新用户注册赠送积分活动 716714
科研通“疑难数据库(出版商)”最低求助积分说明 709678