A machine‐learning approach to calibrate generic Raman models for real‐time monitoring of cell culture processes

校准 计算机科学 拉曼光谱 生物制药 生物系统 人工智能 机器学习 过程分析技术 生化工程 工艺工程 工程类 数学 生物技术 在制品 物理 光学 统计 生物 运营管理
作者
Aditya Tulsyan,Gregg Schorner,Hamid Khodabandehlou,Tony Wang,Myra Coufal,Cenk Ündey
出处
期刊:Biotechnology and Bioengineering [Wiley]
卷期号:116 (10): 2575-2586 被引量:51
标识
DOI:10.1002/bit.27100
摘要

The manufacture of biotherapeutic proteins consists of complex upstream unit operations requiring multiple raw materials, analytical techniques, and control strategies to produce safe and consistent products for patients. Raman spectroscopy is a ubiquitous multipurpose analytical technique in biopharmaceutical manufacturing for real-time predictions of critical parameters in cell culture processes. The accuracy of Raman spectroscopy relies on chemometric models that need to be carefully calibrated. The existing calibration procedure is nontrivial to implement as it necessitates executing multiple carefully designed experiments for generating relevant calibration sets. Further, existing procedure yields calibration models that are reliable only in operating conditions they were calibrated in. This creates a unique challenge in clinical manufacturing where products have limited production history. In this paper, a novel machine-learning procedure based on just-in-time learning (JITL) is proposed to calibrate Raman models. Unlike traditional techniques, JITL-based generic Raman models can be reliably used for different modalities, cell lines, culture media, and operating conditions. The accuracy of JITL-based generic models is demonstrated on several validation studies involving real-time predictions of critical cell culture performance parameters, such as glucose, glutamate, glutamine, ammonium, lactate, sodium, calcium, viability, and viable cell density. The proposed JITL framework introduces a paradigm shift in the way industrial Raman models are calibrated, which to the best of authors' knowledge have not been done before.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
葭月十七发布了新的文献求助10
刚刚
刚刚
1秒前
nanonamo发布了新的文献求助10
1秒前
2秒前
2秒前
oh发布了新的文献求助10
2秒前
pokikiii完成签到,获得积分10
2秒前
苦哈哈发布了新的文献求助10
2秒前
盒子应助mmyhn采纳,获得10
2秒前
2秒前
JamesPei应助CX采纳,获得10
3秒前
TRNA发布了新的文献求助10
3秒前
3秒前
5秒前
pokikiii发布了新的文献求助10
5秒前
佳佳佳发布了新的文献求助10
6秒前
qingwusummer完成签到,获得积分10
7秒前
领导范儿应助看你个采纳,获得10
8秒前
8秒前
隐形曼青应助lljx采纳,获得10
8秒前
9秒前
Owen应助隐形路灯采纳,获得10
10秒前
10秒前
10秒前
英姑应助皮包医师采纳,获得10
10秒前
荷欢笙完成签到,获得积分10
12秒前
12秒前
12秒前
12秒前
14秒前
zhao完成签到 ,获得积分10
15秒前
15秒前
小精灵发布了新的文献求助10
15秒前
好纠结发布了新的文献求助10
16秒前
Math4396完成签到 ,获得积分10
16秒前
17秒前
纪沛儿发布了新的文献求助100
17秒前
lsy发布了新的文献求助10
17秒前
王提发布了新的文献求助10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135577
求助须知:如何正确求助?哪些是违规求助? 2786454
关于积分的说明 7777484
捐赠科研通 2442441
什么是DOI,文献DOI怎么找? 1298558
科研通“疑难数据库(出版商)”最低求助积分说明 625193
版权声明 600847