Preoperative prediction of lymphovascular invasion in invasive breast cancer with dynamic contrast‐enhanced‐MRI‐based radiomics

淋巴血管侵犯 医学 接收机工作特性 乳房磁振造影 乳腺癌 列线图 逻辑回归 无线电技术 队列 磁共振成像 放射科 Lasso(编程语言) 动态增强MRI 曼惠特尼U检验 核医学 肿瘤科 癌症 内科学 转移 乳腺摄影术 计算机科学 万维网
作者
Zhuangsheng Liu,Feng Bao,Changlin Li,Yehang Chen,Qinxian Chen,Xiaoping Li,Jianhua Guan,Xiangmeng Chen,Enming Cui,Ronggang Li,Zhi Li,Wansheng Long
出处
期刊:Journal of Magnetic Resonance Imaging [Wiley]
卷期号:50 (3): 847-857 被引量:67
标识
DOI:10.1002/jmri.26688
摘要

Background Lymphovascular invasion (LVI) status facilitates the selection of optimal therapeutic strategy for breast cancer patients, but in clinical practice LVI status is determined in pathological specimens after resection. Purpose To explore the use of dynamic contrast‐enhanced (DCE)‐magnetic resonance imaging (MRI)‐based radiomics for preoperative prediction of LVI in invasive breast cancer. Study Type Prospective. Population Ninety training cohort patients (22 LVI‐positive and 68 LVI‐negative) and 59 validation cohort patients (22 LVI‐positive and 37 LVI‐negative) were enrolled. Field Strength/Sequence 1.5 T and 3.0 T, T 1 ‐weighted DCE‐MRI. Assessment Axillary lymph node (ALN) status for each patient was evaluated based on MR images (defined as MRI ALN status), and DCE semiquantitative parameters of lesions were calculated. Radiomic features were extracted from the first postcontrast DCE‐MRI. A radiomics signature was constructed in the training cohort with 10‐fold cross‐validation. The independent risk factors for LVI were identified and prediction models for LVI were developed. Their prediction performances and clinical usefulness were evaluated in the validation cohort. Statistical Tests Mann–Whitney U ‐test, chi‐square test, kappa statistics, least absolute shrinkage and selection operator (LASSO) regression, logistic regression, receiver operating characteristic (ROC) analysis, DeLong test, and decision curve analysis (DCA). Results Two radiomic features were selected to construct the radiomics signature. MRI ALN status (odds ratio, 10.452; P < 0.001) and the radiomics signature (odds ratio, 2.895; P = 0.031) were identified as independent risk factors for LVI. The value of the area under the curve (AUC) for a model combining both (0.763) was higher than that for MRI ALN status alone (0.665; P = 0.029) and similar to that for the radiomics signature (0.752; P = 0.857). DCA showed that the combined model added more net benefit than either feature alone. Data Conclusion The DCE‐MRI‐based radiomics signature in combination with MRI ALN status was effective in predicting the LVI status of patients with invasive breast cancer before surgery. Level of Evidence: 1 Technical Efficacy Stage: 2 J. Magn. Reson. Imaging 2019;50:847–857.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
发呆的小号完成签到 ,获得积分10
7秒前
9秒前
布布完成签到,获得积分10
9秒前
聪明眼睛完成签到,获得积分10
9秒前
12秒前
CipherSage应助清枫采纳,获得10
14秒前
14秒前
共享精神应助AAAAA采纳,获得10
15秒前
Dream发布了新的文献求助10
16秒前
17秒前
体贴怜翠发布了新的文献求助10
17秒前
丰知然应助sunishope采纳,获得10
18秒前
18秒前
菜鸟jie发布了新的文献求助10
21秒前
Ricardo完成签到,获得积分10
22秒前
22秒前
24秒前
852应助菜鸟jie采纳,获得10
25秒前
25秒前
清枫完成签到,获得积分10
25秒前
25秒前
26秒前
26秒前
李思发布了新的文献求助10
27秒前
受伤绿柏发布了新的文献求助10
28秒前
体贴怜翠完成签到,获得积分10
28秒前
AAAAA完成签到,获得积分20
29秒前
30秒前
chuh21发布了新的文献求助10
30秒前
31秒前
昌昌昌发布了新的文献求助10
31秒前
大模型应助peanut采纳,获得10
32秒前
32秒前
Eins完成签到 ,获得积分10
33秒前
33秒前
胡研发布了新的文献求助10
33秒前
文文完成签到 ,获得积分10
34秒前
34秒前
999eichyy完成签到,获得积分10
34秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Cognitive Paradigms in Knowledge Organisation 2000
Effect of reactor temperature on FCC yield 2000
How Maoism Was Made: Reconstructing China, 1949-1965 800
Introduction to Spectroscopic Ellipsometry of Thin Film Materials Instrumentation, Data Analysis, and Applications 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3310804
求助须知:如何正确求助?哪些是违规求助? 2943601
关于积分的说明 8515800
捐赠科研通 2618991
什么是DOI,文献DOI怎么找? 1431697
科研通“疑难数据库(出版商)”最低求助积分说明 664472
邀请新用户注册赠送积分活动 649732