A transfer convolutional neural network for fault diagnosis based on ResNet-50

卷积神经网络 计算机科学 人工智能 深度学习 模式识别(心理学) 学习迁移 断层(地质) 残差神经网络 特征(语言学) 地质学 语言学 哲学 地震学
作者
Long Wen,Xinyu Li,Liang Gao
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:32 (10): 6111-6124 被引量:626
标识
DOI:10.1007/s00521-019-04097-w
摘要

With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
4秒前
卜雪旋完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
浮游应助舒心的雪莲采纳,获得10
7秒前
8秒前
8秒前
传奇3应助你好采纳,获得10
9秒前
李小心完成签到,获得积分10
9秒前
9秒前
9秒前
火山蜗牛发布了新的文献求助10
9秒前
xiao茗发布了新的文献求助10
10秒前
changmxiao发布了新的文献求助10
12秒前
13秒前
啦啦啦发布了新的文献求助10
15秒前
julien完成签到,获得积分10
15秒前
16秒前
19秒前
wyw发布了新的文献求助10
20秒前
坦率芷天完成签到,获得积分10
20秒前
端庄的天空关注了科研通微信公众号
21秒前
飞天猫发布了新的文献求助10
22秒前
温暖的问候完成签到,获得积分10
22秒前
23秒前
23秒前
顾矜应助Irelia采纳,获得50
24秒前
25秒前
x00114514完成签到,获得积分10
25秒前
科研通AI6应助xiao茗采纳,获得10
26秒前
可爱的函函应助wyw采纳,获得10
26秒前
26秒前
changmxiao完成签到,获得积分10
27秒前
29秒前
15656869999发布了新的文献求助10
29秒前
29秒前
我思故我在完成签到,获得积分10
30秒前
小二郎应助会幸福的采纳,获得10
31秒前
31秒前
是阿刁完成签到,获得积分10
33秒前
高分求助中
Aerospace Standards Index - 2025 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5457501
求助须知:如何正确求助?哪些是违规求助? 4563864
关于积分的说明 14291930
捐赠科研通 4488544
什么是DOI,文献DOI怎么找? 2458577
邀请新用户注册赠送积分活动 1448595
关于科研通互助平台的介绍 1424244