A transfer convolutional neural network for fault diagnosis based on ResNet-50

卷积神经网络 计算机科学 人工智能 深度学习 模式识别(心理学) 学习迁移 断层(地质) 残差神经网络 特征(语言学) 地质学 语言学 哲学 地震学
作者
Long Wen,Xinyu Li,Liang Gao
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:32 (10): 6111-6124 被引量:520
标识
DOI:10.1007/s00521-019-04097-w
摘要

With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
哭泣的翠丝完成签到,获得积分10
1秒前
1秒前
jennyyu完成签到,获得积分10
1秒前
terence完成签到,获得积分10
1秒前
2秒前
2秒前
HopeStar发布了新的文献求助10
2秒前
马保国123发布了新的文献求助10
2秒前
Hello应助蓝莓松饼采纳,获得10
3秒前
3秒前
优秀的枫发布了新的文献求助10
3秒前
3秒前
KDC完成签到,获得积分10
3秒前
MuMu完成签到,获得积分10
4秒前
4秒前
Yana1311完成签到,获得积分10
5秒前
lkc发布了新的文献求助10
5秒前
大气飞丹完成签到 ,获得积分10
5秒前
调研昵称发布了新的文献求助10
5秒前
yu完成签到 ,获得积分10
6秒前
Lvj发布了新的文献求助10
6秒前
英俊的铭应助lanjq兰坚强采纳,获得10
7秒前
123发布了新的文献求助10
7秒前
含蓄的鹤发布了新的文献求助10
7秒前
7秒前
受伤访波完成签到,获得积分10
8秒前
香蕉觅云应助亻鱼采纳,获得10
8秒前
欢欢发布了新的文献求助10
8秒前
慕青应助研友_Z1WvKL采纳,获得10
8秒前
8秒前
多情怜蕾完成签到,获得积分10
9秒前
9秒前
AD发布了新的文献求助10
10秒前
谢朝邦发布了新的文献求助10
10秒前
科研通AI5应助玲珑油豆腐采纳,获得10
10秒前
10秒前
wjh发布了新的文献求助10
10秒前
Lucky完成签到,获得积分10
11秒前
谨慎涵柏发布了新的文献求助10
11秒前
SciGPT应助心灵美发卡采纳,获得10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527699
求助须知:如何正确求助?哪些是违规求助? 3107752
关于积分的说明 9286499
捐赠科研通 2805513
什么是DOI,文献DOI怎么找? 1539954
邀请新用户注册赠送积分活动 716878
科研通“疑难数据库(出版商)”最低求助积分说明 709759