A transfer convolutional neural network for fault diagnosis based on ResNet-50

卷积神经网络 计算机科学 人工智能 深度学习 模式识别(心理学) 学习迁移 断层(地质) 残差神经网络 特征(语言学) 地质学 语言学 哲学 地震学
作者
Long Wen,Xinyu Li,Liang Gao
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:32 (10): 6111-6124 被引量:450
标识
DOI:10.1007/s00521-019-04097-w
摘要

With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
跳跃的若灵完成签到,获得积分20
1秒前
NexusExplorer应助谨慎忆安采纳,获得10
1秒前
支付宝完成签到,获得积分10
1秒前
1秒前
CynthiaaaCat发布了新的文献求助10
1秒前
3秒前
3秒前
杨心茹完成签到,获得积分10
4秒前
4秒前
伊斯塔发布了新的文献求助10
5秒前
大猫完成签到 ,获得积分10
6秒前
文艺砖家发布了新的文献求助10
6秒前
开开SWAG发布了新的文献求助20
6秒前
科研通AI2S应助帅气的醉蝶采纳,获得10
7秒前
躺平girl完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
Cc发布了新的文献求助10
9秒前
个性的紫菜应助小s采纳,获得10
9秒前
敏感绿竹发布了新的文献求助10
9秒前
威武的大炮完成签到,获得积分10
10秒前
11秒前
11秒前
12秒前
13秒前
贪玩手链发布了新的文献求助10
13秒前
周同学发布了新的文献求助10
14秒前
穿裤子的云应助刘yuer采纳,获得10
14秒前
情怀应助mqq采纳,获得10
14秒前
远道发布了新的文献求助10
15秒前
liyliu1发布了新的文献求助20
15秒前
自然从寒完成签到,获得积分10
15秒前
敏感绿竹完成签到,获得积分10
16秒前
坚强的严青应助cjlce采纳,获得30
16秒前
我是老大应助lollipapo采纳,获得10
16秒前
17秒前
司空元正完成签到 ,获得积分10
17秒前
互助遵法尚德应助史道夫采纳,获得10
17秒前
风云念幻完成签到,获得积分20
17秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
Classics in Total Synthesis IV 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3145470
求助须知:如何正确求助?哪些是违规求助? 2796872
关于积分的说明 7821855
捐赠科研通 2453171
什么是DOI,文献DOI怎么找? 1305478
科研通“疑难数据库(出版商)”最低求助积分说明 627487
版权声明 601464