A transfer convolutional neural network for fault diagnosis based on ResNet-50

卷积神经网络 计算机科学 人工智能 深度学习 模式识别(心理学) 学习迁移 断层(地质) 残差神经网络 特征(语言学) 地质学 语言学 哲学 地震学
作者
Long Wen,Xinyu Li,Liang Gao
出处
期刊:Neural Computing and Applications [Springer Nature]
卷期号:32 (10): 6111-6124 被引量:626
标识
DOI:10.1007/s00521-019-04097-w
摘要

With the rapid development of smart manufacturing, data-driven fault diagnosis has attracted increasing attentions. As one of the most popular methods applied in fault diagnosis, deep learning (DL) has achieved remarkable results. However, due to the fact that the volume of labeled samples is small in fault diagnosis, the depths of DL models for fault diagnosis are shallow compared with convolutional neural network in other areas (including ImageNet), which limits their final prediction accuracies. In this research, a new TCNN(ResNet-50) with the depth of 51 convolutional layers is proposed for fault diagnosis. By combining with transfer learning, TCNN(ResNet-50) applies ResNet-50 trained on ImageNet as feature extractor for fault diagnosis. Firstly, a signal-to-image method is developed to convert time-domain fault signals to RGB images format as the input datatype of ResNet-50. Then, a new structure of TCNN(ResNet-50) is proposed. Finally, the proposed TCNN(ResNet-50) has been tested on three datasets, including bearing damage dataset provided by KAT datacenter, motor bearing dataset provided by Case Western Reserve University (CWRU) and self-priming centrifugal pump dataset. It achieved state-of-the-art results. The prediction accuracies of TCNN(ResNet-50) are as high as 98.95% ± 0.0074, 99.99% ± 0 and 99.20% ± 0, which demonstrates that TCNN(ResNet-50) outperforms other DL models and traditional methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
陶醉的烤鸡完成签到 ,获得积分10
2秒前
独特的沛凝完成签到,获得积分10
3秒前
奋斗机器猫完成签到 ,获得积分10
6秒前
细心夏瑶完成签到,获得积分10
6秒前
7秒前
慕青应助流年采纳,获得20
8秒前
9秒前
CC完成签到 ,获得积分10
11秒前
11秒前
李爱国应助科研界星辰采纳,获得10
11秒前
11秒前
12秒前
13秒前
moon完成签到,获得积分20
13秒前
14秒前
徐小二发布了新的文献求助10
14秒前
SCI完成签到 ,获得积分10
15秒前
changping应助zh采纳,获得10
16秒前
MOF发布了新的文献求助10
17秒前
18秒前
19秒前
果冻呀发布了新的文献求助10
19秒前
19秒前
轻狂书生完成签到,获得积分10
19秒前
20秒前
21秒前
23秒前
Ava应助guard采纳,获得20
23秒前
冷酷男人完成签到,获得积分10
24秒前
无敌通发布了新的文献求助10
24秒前
24秒前
浮浮世世发布了新的文献求助10
25秒前
在水一方应助MOF采纳,获得10
25秒前
darwind完成签到,获得积分10
26秒前
TingtingGZ发布了新的文献求助10
29秒前
shin发布了新的文献求助10
30秒前
Qin完成签到,获得积分10
30秒前
33秒前
34秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
FUNDAMENTAL STUDY OF ADAPTIVE CONTROL SYSTEMS 500
微纳米加工技术及其应用 500
Nanoelectronics and Information Technology: Advanced Electronic Materials and Novel Devices 500
Performance optimization of advanced vapor compression systems working with low-GWP refrigerants using numerical and experimental methods 500
Constitutional and Administrative Law 500
PARLOC2001: The update of loss containment data for offshore pipelines 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5295902
求助须知:如何正确求助?哪些是违规求助? 4445301
关于积分的说明 13835866
捐赠科研通 4329906
什么是DOI,文献DOI怎么找? 2376813
邀请新用户注册赠送积分活动 1372170
关于科研通互助平台的介绍 1337511