雷登弗罗斯特效应
悬浮
冷凝
材料科学
Lift(数据挖掘)
热力学
机械
纳米技术
沸腾
传热
化学物理
化学
核沸腾
物理
传热系数
计算机科学
量子力学
数据挖掘
磁铁
作者
Philippe Bourrianne,Cunjing Lv,David Quéré
出处
期刊:Science Advances
[American Association for the Advancement of Science]
日期:2019-06-01
卷期号:5 (6)
被引量:67
标识
DOI:10.1126/sciadv.aaw0304
摘要
Superhydrophobicity (observed at room temperature) and Leidenfrost phenomenon (observed on very hot solids) are classical examples of nonwetting surfaces. It was found that combining the two effects by heating water-repellent materials leads to a marked yet unexplained decrease of the Leidenfrost temperature of water. We discuss here how heat enhances superhydrophobicity by favoring a "cold Leidenfrost regime" where water adhesion becomes nonmeasurable even at moderate substrate temperature. Heat is found to induce contradictory effects (sticking due to vapor condensation, and lift due to the spreading of vapor patches), which is eventually shown to be controllable by the solid surface texture. The transition to the levitating Leidenfrost regime is observed to be continuous as a function of temperature, contrasting with the transition on common solids.
科研通智能强力驱动
Strongly Powered by AbleSci AI