A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study

医学 免疫疗法 无线电技术 肿瘤科 CD8型 回顾性队列研究 PD-L1 癌症研究 内科学 生物标志物 免疫系统 免疫学 放射科 化学 生物化学
作者
Roger Sun,Elaine Johanna Limkin,Maria Vakalopoulou,Laurent Dercle,Stéphane Champiat,Shan Rong Han,Loïc Verlingue,David Brandão,Andrea Lancia,Samy Ammari,Antoine Hollebecque,Jean‐Yves Scoazec,Aurélien Marabelle,Christophe Massard,Jean‐Charles Soria,Charlotte Robert,Nikos Paragios,Éric Deutsch,Charles Ferté
出处
期刊:Lancet Oncology [Elsevier]
卷期号:19 (9): 1180-1191 被引量:895
标识
DOI:10.1016/s1470-2045(18)30413-3
摘要

Summary

Background

Because responses of patients with cancer to immunotherapy can vary in success, innovative predictors of response to treatment are urgently needed to improve treatment outcomes. We aimed to develop and independently validate a radiomics-based biomarker of tumour-infiltrating CD8 cells in patients included in phase 1 trials of anti-programmed cell death protein (PD)-1 or anti-programmed cell death ligand 1 (PD-L1) monotherapy. We also aimed to evaluate the association between the biomarker, and tumour immune phenotype and clinical outcomes of these patients.

Methods

In this retrospective multicohort study, we used four independent cohorts of patients with advanced solid tumours to develop and validate a radiomic signature predictive of immunotherapy response by combining contrast-enhanced CT images and RNA-seq genomic data from tumour biopsies to assess CD8 cell tumour infiltration. To develop the radiomic signature of CD8 cells, we used the CT images and RNA sequencing data of 135 patients with advanced solid malignant tumours who had been enrolled into the MOSCATO trial between May 1, 2012, and March 31, 2016, in France (training set). The genomic data, which are based on the CD8B gene, were used to estimate the abundance of CD8 cells in the samples and data were then aligned with the images to generate the radiomic signatures. The concordance of the radiomic signature (primary endpoint) was validated in a Cancer Genome Atlas [TGCA] database dataset including 119 patients who had available baseline preoperative imaging data and corresponding transcriptomic data on June 30, 2017. From 84 input variables used for the machine-learning method (78 radiomic features, five location variables, and one technical variable), a radiomics-based predictor of the CD8 cell expression signature was built by use of machine learning (elastic-net regularised regression method). Two other independent cohorts of patients with advanced solid tumours were used to evaluate this predictor. The immune phenotype internal cohort (n=100), were randomly selected from the Gustave Roussy Cancer Campus database of patient medical records based on previously described, extreme tumour-immune phenotypes: immune-inflamed (with dense CD8 cell infiltration) or immune-desert (with low CD8 cell infiltration), irrespective of treatment delivered; these data were used to analyse the correlation of the immune phenotype with this biomarker. Finally, the immunotherapy-treated dataset (n=137) of patients recruited from Dec 1, 2011, to Jan 31, 2014, at the Gustave Roussy Cancer Campus, who had been treated with anti-PD-1 and anti-PD-L1 monotherapy in phase 1 trials, was used to assess the predictive value of this biomarker in terms of clinical outcome.

Findings

We developed a radiomic signature for CD8 cells that included eight variables, which was validated with the gene expression signature of CD8 cells in the TCGA dataset (area under the curve [AUC]=0·67; 95% CI 0·57–0·77; p=0·0019). In the cohort with assumed immune phenotypes, the signature was also able to discriminate inflamed tumours from immune-desert tumours (0·76; 0·66–0·86; p<0·0001). In patients treated with anti-PD-1 and PD-L1, a high baseline radiomic score (relative to the median) was associated with a higher proportion of patients who achieved an objective response at 3 months (vs those with progressive disease or stable disease; p=0·049) and a higher proportion of patients who had an objective response (vs those with progressive disease or stable disease; p=0·025) or stable disease (vs those with progressive disease; p=0·013) at 6 months. A high baseline radiomic score was also associated with improved overall survival in univariate (median overall survival 24·3 months in the high radiomic score group, 95% CI 18·63–42·1; vs 11·5 months in the low radiomic score group, 7·98–15·6; hazard ratio 0·58, 95% CI 0·39–0·87; p=0·0081) and multivariate analyses (0·52, 0·35–0·79; p=0·0022).

Interpretation

The radiomic signature of CD8 cells was validated in three independent cohorts. This imaging predictor provided a promising way to predict the immune phenotype of tumours and to infer clinical outcomes for patients with cancer who had been treated with anti-PD-1 and PD-L1. Our imaging biomarker could be useful in estimating CD8 cell count and predicting clinical outcomes of patients treated with immunotherapy, when validated by further prospective randomised trials.

Funding

Fondation pour la Recherche Médicale, and SIRIC-SOCRATE 2.0, French Society of Radiation Oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Augusterny完成签到 ,获得积分10
8秒前
Feng5945完成签到 ,获得积分10
20秒前
cfsyyfujia完成签到 ,获得积分10
22秒前
林黛玉倒拔垂杨柳完成签到 ,获得积分10
34秒前
淡淡醉波wuliao完成签到 ,获得积分10
38秒前
xixi很困完成签到 ,获得积分10
1分钟前
愉快的冰萍完成签到 ,获得积分10
1分钟前
在水一方应助激情的含巧采纳,获得10
1分钟前
isedu完成签到,获得积分10
1分钟前
Singularity应助科研通管家采纳,获得10
1分钟前
1分钟前
2分钟前
风中一叶完成签到 ,获得积分10
2分钟前
Shrimp完成签到 ,获得积分10
2分钟前
2分钟前
安静严青完成签到 ,获得积分10
2分钟前
绿色心情完成签到 ,获得积分10
2分钟前
开朗白开水完成签到 ,获得积分10
2分钟前
激情的含巧完成签到,获得积分10
2分钟前
你好纠结伦完成签到,获得积分10
2分钟前
2分钟前
zjq完成签到 ,获得积分10
2分钟前
好名字完成签到,获得积分10
2分钟前
zhangruixue0519完成签到 ,获得积分10
2分钟前
logolush完成签到 ,获得积分10
2分钟前
西红柿不吃皮完成签到 ,获得积分10
2分钟前
SH123完成签到 ,获得积分10
2分钟前
loren313完成签到,获得积分0
3分钟前
3分钟前
夏添发布了新的文献求助10
3分钟前
香樟遗完成签到 ,获得积分10
3分钟前
机智的小羊尾完成签到 ,获得积分10
3分钟前
夏添完成签到,获得积分10
3分钟前
哈哈哈哈哈哈哈完成签到 ,获得积分20
3分钟前
roundtree完成签到 ,获得积分0
3分钟前
黄花完成签到 ,获得积分10
3分钟前
肥羊七号完成签到 ,获得积分10
3分钟前
小不完成签到 ,获得积分10
3分钟前
CUN完成签到,获得积分10
3分钟前
Singularity应助科研通管家采纳,获得10
3分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137039
求助须知:如何正确求助?哪些是违规求助? 2788014
关于积分的说明 7784284
捐赠科研通 2444088
什么是DOI,文献DOI怎么找? 1299724
科研通“疑难数据库(出版商)”最低求助积分说明 625536
版权声明 601010