A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study

医学 免疫疗法 无线电技术 肿瘤科 CD8型 回顾性队列研究 PD-L1 癌症研究 内科学 生物标志物 免疫系统 免疫学 放射科 化学 生物化学
作者
Roger Sun,Elaine Johanna Limkin,Maria Vakalopoulou,Laurent Dercle,Stéphane Champiat,Shan Rong Han,Loïc Verlingue,David Brandão,Andrea Lancia,Samy Ammari,Antoine Hollebecque,Jean–Yves Scoazec,Aurélien Marabelle,Christophe Massard,Jean‐Charles Soria,Charlotte Robert,Nikos Paragios,Éric Deutsch,Charles Ferté
出处
期刊:Lancet Oncology [Elsevier BV]
卷期号:19 (9): 1180-1191 被引量:980
标识
DOI:10.1016/s1470-2045(18)30413-3
摘要

Summary

Background

Because responses of patients with cancer to immunotherapy can vary in success, innovative predictors of response to treatment are urgently needed to improve treatment outcomes. We aimed to develop and independently validate a radiomics-based biomarker of tumour-infiltrating CD8 cells in patients included in phase 1 trials of anti-programmed cell death protein (PD)-1 or anti-programmed cell death ligand 1 (PD-L1) monotherapy. We also aimed to evaluate the association between the biomarker, and tumour immune phenotype and clinical outcomes of these patients.

Methods

In this retrospective multicohort study, we used four independent cohorts of patients with advanced solid tumours to develop and validate a radiomic signature predictive of immunotherapy response by combining contrast-enhanced CT images and RNA-seq genomic data from tumour biopsies to assess CD8 cell tumour infiltration. To develop the radiomic signature of CD8 cells, we used the CT images and RNA sequencing data of 135 patients with advanced solid malignant tumours who had been enrolled into the MOSCATO trial between May 1, 2012, and March 31, 2016, in France (training set). The genomic data, which are based on the CD8B gene, were used to estimate the abundance of CD8 cells in the samples and data were then aligned with the images to generate the radiomic signatures. The concordance of the radiomic signature (primary endpoint) was validated in a Cancer Genome Atlas [TGCA] database dataset including 119 patients who had available baseline preoperative imaging data and corresponding transcriptomic data on June 30, 2017. From 84 input variables used for the machine-learning method (78 radiomic features, five location variables, and one technical variable), a radiomics-based predictor of the CD8 cell expression signature was built by use of machine learning (elastic-net regularised regression method). Two other independent cohorts of patients with advanced solid tumours were used to evaluate this predictor. The immune phenotype internal cohort (n=100), were randomly selected from the Gustave Roussy Cancer Campus database of patient medical records based on previously described, extreme tumour-immune phenotypes: immune-inflamed (with dense CD8 cell infiltration) or immune-desert (with low CD8 cell infiltration), irrespective of treatment delivered; these data were used to analyse the correlation of the immune phenotype with this biomarker. Finally, the immunotherapy-treated dataset (n=137) of patients recruited from Dec 1, 2011, to Jan 31, 2014, at the Gustave Roussy Cancer Campus, who had been treated with anti-PD-1 and anti-PD-L1 monotherapy in phase 1 trials, was used to assess the predictive value of this biomarker in terms of clinical outcome.

Findings

We developed a radiomic signature for CD8 cells that included eight variables, which was validated with the gene expression signature of CD8 cells in the TCGA dataset (area under the curve [AUC]=0·67; 95% CI 0·57–0·77; p=0·0019). In the cohort with assumed immune phenotypes, the signature was also able to discriminate inflamed tumours from immune-desert tumours (0·76; 0·66–0·86; p<0·0001). In patients treated with anti-PD-1 and PD-L1, a high baseline radiomic score (relative to the median) was associated with a higher proportion of patients who achieved an objective response at 3 months (vs those with progressive disease or stable disease; p=0·049) and a higher proportion of patients who had an objective response (vs those with progressive disease or stable disease; p=0·025) or stable disease (vs those with progressive disease; p=0·013) at 6 months. A high baseline radiomic score was also associated with improved overall survival in univariate (median overall survival 24·3 months in the high radiomic score group, 95% CI 18·63–42·1; vs 11·5 months in the low radiomic score group, 7·98–15·6; hazard ratio 0·58, 95% CI 0·39–0·87; p=0·0081) and multivariate analyses (0·52, 0·35–0·79; p=0·0022).

Interpretation

The radiomic signature of CD8 cells was validated in three independent cohorts. This imaging predictor provided a promising way to predict the immune phenotype of tumours and to infer clinical outcomes for patients with cancer who had been treated with anti-PD-1 and PD-L1. Our imaging biomarker could be useful in estimating CD8 cell count and predicting clinical outcomes of patients treated with immunotherapy, when validated by further prospective randomised trials.

Funding

Fondation pour la Recherche Médicale, and SIRIC-SOCRATE 2.0, French Society of Radiation Oncology.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小二郎应助林钟望采纳,获得10
1秒前
小锅完成签到 ,获得积分10
2秒前
yrd完成签到,获得积分10
2秒前
吴旭东发布了新的文献求助10
2秒前
Lydia完成签到,获得积分10
2秒前
lastdance发布了新的文献求助10
5秒前
100完成签到,获得积分10
7秒前
义气妙之发布了新的文献求助30
7秒前
云宝完成签到 ,获得积分10
7秒前
8秒前
天天快乐应助aikanwenxian采纳,获得10
9秒前
10秒前
zhuo完成签到,获得积分10
11秒前
11秒前
爆米花应助娃哈哈采纳,获得10
12秒前
12秒前
香蕉静芙完成签到,获得积分20
13秒前
keke发布了新的文献求助20
14秒前
15秒前
闹闹发布了新的文献求助10
16秒前
十八完成签到,获得积分10
17秒前
思源应助香蕉静芙采纳,获得10
17秒前
17秒前
sssssss应助高挑的小蕊采纳,获得10
19秒前
renpp822发布了新的文献求助20
19秒前
19秒前
Emily发布了新的文献求助10
21秒前
yaya发布了新的文献求助10
22秒前
wanci应助hyh采纳,获得10
22秒前
23秒前
rare发布了新的文献求助30
23秒前
24秒前
娃哈哈完成签到,获得积分20
24秒前
27秒前
娃哈哈发布了新的文献求助10
27秒前
27秒前
NexusExplorer应助dyy采纳,获得10
28秒前
daker发布了新的文献求助30
28秒前
28秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672470
求助须知:如何正确求助?哪些是违规求助? 3228781
关于积分的说明 9781944
捐赠科研通 2939186
什么是DOI,文献DOI怎么找? 1610704
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174