DeepCrack: Learning Hierarchical Convolutional Features for Crack Detection

卷积神经网络 计算机科学 人工智能 比例(比率) 模式识别(心理学) 编码器 直线(几何图形) 代表(政治) 特征提取 深度学习 保险丝(电气) 特征(语言学) 特征学习 计算机视觉 数学 工程类 几何学 语言学 哲学 物理 电气工程 量子力学 政治 政治学 法学 操作系统
作者
Qin Zou,Zheng Zhang,Qingquan Li,Xianbiao Qi,Qian Wang,Song Wang
出处
期刊:IEEE transactions on image processing [Institute of Electrical and Electronics Engineers]
卷期号:28 (3): 1498-1512 被引量:714
标识
DOI:10.1109/tip.2018.2878966
摘要

Cracks are typical line structures that are of interest in many computer-vision applications. In practice, many cracks, e.g., pavement cracks, show poor continuity and low contrast, which brings great challenges to image-based crack detection by using low-level features. In this paper, we propose DeepCrack - an end-to-end trainable deep convolutional neural network for automatic crack detection by learning high-level features for crack representation. In this method, multi-scale deep convolutional features learned at hierarchical convolutional stages are fused together to capture the line structures. More detailed representations are made in larger-scale feature maps and more holistic representations are made in smaller-scale feature maps. We build DeepCrack net on the encoder-decoder architecture of SegNet, and pairwisely fuse the convolutional features generated in the encoder network and in the decoder network at the same scale. We train DeepCrack net on one crack dataset and evaluate it on three others. The experimental results demonstrate that DeepCrack achieves F-Measure over 0.87 on the three challenging datasets in average and outperforms the current state-of-the-art methods.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SharonDu完成签到 ,获得积分10
1秒前
2秒前
yuncong323完成签到,获得积分10
3秒前
huohuo完成签到,获得积分10
5秒前
CB完成签到,获得积分10
6秒前
6秒前
7秒前
儒雅路人完成签到,获得积分10
8秒前
OLDBLOW完成签到,获得积分10
9秒前
9秒前
liupangzi完成签到,获得积分10
9秒前
wang完成签到,获得积分10
9秒前
10秒前
Catherkk发布了新的文献求助10
10秒前
lcdamoy完成签到,获得积分10
11秒前
钱浩然发布了新的文献求助10
11秒前
烊烊发布了新的文献求助10
12秒前
十曰完成签到,获得积分10
17秒前
jjjjchou完成签到,获得积分10
18秒前
虚心的不二完成签到 ,获得积分10
20秒前
xuzj应助科研通管家采纳,获得10
21秒前
小马甲应助科研通管家采纳,获得10
21秒前
21秒前
思源应助科研通管家采纳,获得10
21秒前
21秒前
研友_VZG7GZ应助科研通管家采纳,获得10
21秒前
fang应助科研通管家采纳,获得10
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
科研通AI5应助科研通管家采纳,获得10
21秒前
FashionBoy应助科研通管家采纳,获得10
21秒前
shiizii应助科研通管家采纳,获得10
21秒前
23秒前
火星上的雨莲完成签到,获得积分10
27秒前
开朗的绮山发布了新的文献求助150
27秒前
平淡远山发布了新的文献求助10
28秒前
热心市民小红花应助Roman采纳,获得10
29秒前
艺术家完成签到 ,获得积分10
30秒前
研友_ngqjz8完成签到,获得积分10
31秒前
LT完成签到 ,获得积分0
32秒前
优秀的dd完成签到 ,获得积分10
33秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038235
求助须知:如何正确求助?哪些是违规求助? 3575992
关于积分的说明 11374009
捐赠科研通 3305760
什么是DOI,文献DOI怎么找? 1819276
邀请新用户注册赠送积分活动 892662
科研通“疑难数据库(出版商)”最低求助积分说明 815022