梯度升压
Boosting(机器学习)
范畴变量
计算机科学
人工智能
机器学习
随机森林
作者
Anna Veronika Dorogush,Vasily Ershov,Andrey Gulin
出处
期刊:Cornell University - arXiv
日期:2018-01-01
被引量:804
标识
DOI:10.48550/arxiv.1810.11363
摘要
In this paper we present CatBoost, a new open-sourced gradient boosting library that successfully handles categorical features and outperforms existing publicly available implementations of gradient boosting in terms of quality on a set of popular publicly available datasets. The library has a GPU implementation of learning algorithm and a CPU implementation of scoring algorithm, which are significantly faster than other gradient boosting libraries on ensembles of similar sizes.
科研通智能强力驱动
Strongly Powered by AbleSci AI