Quantifying inactive lithium in lithium metal batteries

锂(药物) 电解质 材料科学 阳极 相间 化学工程 透射电子显微镜 金属 法拉第效率 化学 分析化学(期刊) 电极 纳米技术 冶金 有机化学 物理化学 医学 生物 遗传学 工程类 内分泌学
作者
Chengcheng Fang,Jinxing Li,Minghao Zhang,Yihui Zhang,Fan Yang,Jungwoo Z. Lee,Min‐Han Lee,Judith Alvarado,Marshall A. Schroeder,Yangyuchen Yang,Bingyu Lu,Nicholas Williams,Miguel Ceja,Li Yang,Mei Cai,Jing Gu,Kang Xu,Xuefeng Wang,Ying Shirley Meng
出处
期刊:Nature [Springer Nature]
卷期号:572 (7770): 511-515 被引量:1079
标识
DOI:10.1038/s41586-019-1481-z
摘要

Lithium metal anodes offer high theoretical capacities (3,860 milliampere-hours per gram)1, but rechargeable batteries built with such anodes suffer from dendrite growth and low Coulombic efficiency (the ratio of charge output to charge input), preventing their commercial adoption2,3. The formation of inactive (‘dead’) lithium— which consists of both (electro)chemically formed Li+ compounds in the solid electrolyte interphase and electrically isolated unreacted metallic Li0 (refs 4,5)—causes capacity loss and safety hazards. Quantitatively distinguishing between Li+ in components of the solid electrolyte interphase and unreacted metallic Li0 has not been possible, owing to the lack of effective diagnostic tools. Optical microscopy6, in situ environmental transmission electron microscopy7,8, X-ray microtomography9 and magnetic resonance imaging10 provide a morphological perspective with little chemical information. Nuclear magnetic resonance11, X-ray photoelectron spectroscopy12 and cryogenic transmission electron microscopy13,14 can distinguish between Li+ in the solid electrolyte interphase and metallic Li0, but their detection ranges are limited to surfaces or local regions. Here we establish the analytical method of titration gas chromatography to quantify the contribution of unreacted metallic Li0 to the total amount of inactive lithium. We identify the unreacted metallic Li0, not the (electro)chemically formed Li+ in the solid electrolyte interphase, as the dominant source of inactive lithium and capacity loss. By coupling the unreacted metallic Li0 content to observations of its local microstructure and nanostructure by cryogenic electron microscopy (both scanning and transmission), we also establish the formation mechanism of inactive lithium in different types of electrolytes and determine the underlying cause of low Coulombic efficiency in plating and stripping (the charge and discharge processes, respectively, in a full cell) of lithium metal anodes. We propose strategies for making lithium plating and stripping more efficient so that lithium metal anodes can be used for next-generation high-energy batteries. Titration gas chromatography is developed as an analytical method of distinguishing between lithium metal and lithium compounds within a cycled battery and assessing the amount of unreacted metallic lithium available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
Orange应助123采纳,获得10
刚刚
2秒前
仄言完成签到,获得积分10
2秒前
3秒前
儒雅的斑马完成签到,获得积分10
3秒前
汉堡包应助咕噜仔采纳,获得10
3秒前
FashionBoy应助momo采纳,获得10
3秒前
4秒前
4秒前
5秒前
第七兵团司令完成签到,获得积分10
6秒前
6秒前
qwq应助追梦采纳,获得10
6秒前
6秒前
7秒前
我爱Chem完成签到 ,获得积分10
7秒前
半生发布了新的文献求助30
8秒前
8秒前
成就梦松完成签到,获得积分10
8秒前
byyyy完成签到,获得积分10
8秒前
温暖的俊驰完成签到,获得积分10
9秒前
Isabel完成签到,获得积分10
9秒前
yx应助陈强采纳,获得30
10秒前
sokach发布了新的文献求助10
12秒前
缓慢荔枝发布了新的文献求助10
12秒前
123发布了新的文献求助10
13秒前
天御雪完成签到,获得积分10
13秒前
gen关闭了gen文献求助
13秒前
13秒前
科研通AI5应助oldlee采纳,获得10
14秒前
14秒前
MADKAI发布了新的文献求助10
14秒前
哈哈悦完成签到,获得积分10
14秒前
赘婿应助duoduozs采纳,获得10
14秒前
kai完成签到,获得积分10
15秒前
15秒前
情怀应助xhy采纳,获得10
15秒前
整齐的灭绝完成签到 ,获得积分10
16秒前
充电宝应助船舵采纳,获得10
16秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527304
求助须知:如何正确求助?哪些是违规求助? 3107454
关于积分的说明 9285518
捐赠科研通 2805269
什么是DOI,文献DOI怎么找? 1539827
邀请新用户注册赠送积分活动 716708
科研通“疑难数据库(出版商)”最低求助积分说明 709672