Quantifying inactive lithium in lithium metal batteries

锂(药物) 电解质 材料科学 阳极 相间 化学工程 透射电子显微镜 金属 法拉第效率 化学 分析化学(期刊) 电极 纳米技术 冶金 有机化学 物理化学 医学 生物 遗传学 工程类 内分泌学
作者
Chengcheng Fang,Jinxing Li,Minghao Zhang,Yihui Zhang,Fan Yang,Jungwoo Z. Lee,Min‐Han Lee,Judith Alvarado,Marshall A. Schroeder,Yangyuchen Yang,Bingyu Lu,Nick Williams,Miguel Ceja,Li Yang,Mei Cai,Jing Gu,Kang Xu,Xuefeng Wang,Ying Shirley Meng
出处
期刊:Nature [Springer Nature]
卷期号:572 (7770): 511-515 被引量:1017
标识
DOI:10.1038/s41586-019-1481-z
摘要

Lithium metal anodes offer high theoretical capacities (3,860 milliampere-hours per gram)1, but rechargeable batteries built with such anodes suffer from dendrite growth and low Coulombic efficiency (the ratio of charge output to charge input), preventing their commercial adoption2,3. The formation of inactive (‘dead’) lithium— which consists of both (electro)chemically formed Li+ compounds in the solid electrolyte interphase and electrically isolated unreacted metallic Li0 (refs 4,5)—causes capacity loss and safety hazards. Quantitatively distinguishing between Li+ in components of the solid electrolyte interphase and unreacted metallic Li0 has not been possible, owing to the lack of effective diagnostic tools. Optical microscopy6, in situ environmental transmission electron microscopy7,8, X-ray microtomography9 and magnetic resonance imaging10 provide a morphological perspective with little chemical information. Nuclear magnetic resonance11, X-ray photoelectron spectroscopy12 and cryogenic transmission electron microscopy13,14 can distinguish between Li+ in the solid electrolyte interphase and metallic Li0, but their detection ranges are limited to surfaces or local regions. Here we establish the analytical method of titration gas chromatography to quantify the contribution of unreacted metallic Li0 to the total amount of inactive lithium. We identify the unreacted metallic Li0, not the (electro)chemically formed Li+ in the solid electrolyte interphase, as the dominant source of inactive lithium and capacity loss. By coupling the unreacted metallic Li0 content to observations of its local microstructure and nanostructure by cryogenic electron microscopy (both scanning and transmission), we also establish the formation mechanism of inactive lithium in different types of electrolytes and determine the underlying cause of low Coulombic efficiency in plating and stripping (the charge and discharge processes, respectively, in a full cell) of lithium metal anodes. We propose strategies for making lithium plating and stripping more efficient so that lithium metal anodes can be used for next-generation high-energy batteries. Titration gas chromatography is developed as an analytical method of distinguishing between lithium metal and lithium compounds within a cycled battery and assessing the amount of unreacted metallic lithium available.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Keyl完成签到,获得积分10
刚刚
超人Steiner发布了新的文献求助20
1秒前
陈惠卿88完成签到,获得积分10
2秒前
Akim应助画风湖湘卷采纳,获得10
2秒前
123发布了新的文献求助10
2秒前
DrChan完成签到,获得积分10
3秒前
修管子完成签到,获得积分10
4秒前
苏南完成签到 ,获得积分10
6秒前
AAA完成签到,获得积分10
7秒前
彭于晏应助格子布采纳,获得10
9秒前
10秒前
10秒前
11秒前
丁又菡完成签到,获得积分10
11秒前
薰硝壤应助nn采纳,获得10
12秒前
14秒前
六角发布了新的文献求助10
14秒前
cshuang完成签到,获得积分10
15秒前
书晴发布了新的文献求助10
15秒前
15秒前
流沙无言完成签到 ,获得积分10
16秒前
乘一发布了新的文献求助10
16秒前
lyjj023完成签到,获得积分10
19秒前
19秒前
六角完成签到,获得积分10
20秒前
20秒前
23秒前
甜蜜水蜜桃完成签到,获得积分10
23秒前
24秒前
格子布发布了新的文献求助10
25秒前
酷酷的涵蕾完成签到 ,获得积分10
26秒前
HH完成签到,获得积分20
27秒前
平常松思完成签到,获得积分10
28秒前
英俊小蘑菇完成签到,获得积分10
28秒前
29秒前
lzl完成签到,获得积分10
30秒前
欣喜电源完成签到,获得积分10
30秒前
31秒前
山川完成签到,获得积分10
31秒前
乘一完成签到,获得积分10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141384
求助须知:如何正确求助?哪些是违规求助? 2792400
关于积分的说明 7802329
捐赠科研通 2448585
什么是DOI,文献DOI怎么找? 1302633
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237