Infrared Small Target Detection Based on Facet Kernel and Random Walker

计算机科学 核(代数) 人工智能 遥感 模式识别(心理学) 数学 地质学 组合数学
作者
Yao Qin,Lorenzo Bruzzone,Chengqiang Gao,Biao Li
出处
期刊:IEEE Transactions on Geoscience and Remote Sensing [Institute of Electrical and Electronics Engineers]
卷期号:57 (9): 7104-7118 被引量:169
标识
DOI:10.1109/tgrs.2019.2911513
摘要

Efficient detection of targets immersed in a complex background with a low signal-to-clutter ratio (SCR) is very important in infrared search and tracking (IRST) applications. In this paper, we address the target detection problem in terms of local image segmentation and propose a novel small target detection algorithm derived from facet kernel and random walker (RW) algorithm which includes four main stages. First, since the RW algorithm is suitable for images with less noises, local order-statistic and mean filtering are applied to remove the pixel-sized noises with high brightness (PNHB) and smooth the infrared images. Second, the infrared image is filtered by the facet kernel to enhance the target pixels and candidate target pixels are extracted by an adaptive threshold operation. Third, inspired by the properties of infrared targets, a novel local contrast descriptor (NLCD) based on the RW algorithm is proposed to achieve clutter suppression and target enhancement. Then, the candidate target pixels are selected as central pixels to construct the local regions and the NLCD map of all local regions is computed. The obtained NLCD map is weighted by the filtered map of facet kernel to further enhance target. Finally, the target is detected by a thresholding operation on the weighted map. Experimental results on three data sets show that the proposed method outperforms conventional baseline methods in terms of target detection accuracy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刻苦惜霜完成签到,获得积分10
1秒前
kecheng应助催化打工人采纳,获得10
1秒前
2秒前
2秒前
NexusExplorer应助MCS采纳,获得10
2秒前
医无止境完成签到,获得积分10
2秒前
3秒前
姜一笑完成签到,获得积分20
3秒前
3秒前
3秒前
李爱国应助微辣不加香菜采纳,获得10
4秒前
4秒前
4秒前
4秒前
5秒前
Akim应助红木白花采纳,获得10
5秒前
5秒前
5秒前
鹿冶完成签到 ,获得积分10
6秒前
包佳梁发布了新的文献求助10
6秒前
ZZ完成签到,获得积分10
6秒前
6秒前
kyan发布了新的文献求助10
7秒前
sha完成签到,获得积分10
7秒前
7秒前
7秒前
8秒前
勤恳觅珍发布了新的文献求助10
8秒前
36456657发布了新的文献求助10
8秒前
8秒前
顾矜应助漂亮的振家采纳,获得10
9秒前
XX完成签到,获得积分10
9秒前
山猫完成签到,获得积分10
10秒前
开心人达发布了新的文献求助10
10秒前
11秒前
Cecily发布了新的文献求助10
11秒前
11秒前
Lirui2333完成签到 ,获得积分10
12秒前
pcr163应助cxt采纳,获得50
12秒前
执着冬亦关注了科研通微信公众号
13秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Picture Books with Same-sex Parented Families: Unintentional Censorship 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3969383
求助须知:如何正确求助?哪些是违规求助? 3514211
关于积分的说明 11172730
捐赠科研通 3249476
什么是DOI,文献DOI怎么找? 1794909
邀请新用户注册赠送积分活动 875441
科研通“疑难数据库(出版商)”最低求助积分说明 804827