Service Candidate Identification from Monolithic Systems Based on Execution Traces

计算机科学 可维护性 可扩展性 服务(商务) 鉴定(生物学) 软件工程 面向服务的体系结构 接口(物质) 模块化(生物学) 分布式计算 Web服务 数据库 操作系统 万维网 生物 最大气泡压力法 经济 气泡 遗传学 经济 植物
作者
Wuxia Jin,Ting Liu,Yuanfang Cai,Rick Kazman,Ran Mo,Qinghua Zheng
出处
期刊:IEEE Transactions on Software Engineering [Institute of Electrical and Electronics Engineers]
卷期号:47 (5): 987-1007 被引量:106
标识
DOI:10.1109/tse.2019.2910531
摘要

Monolithic systems increasingly suffer from maintainability and scalability issues as they grow in functionality, size, and complexity. It is widely believed that (micro)service-based architectures can alleviate these problems as each service is supposed to have the following characteristics: clearly defined functionality, sufficient modularity, and the ability to evolve independently. Industrial practices show that service extraction from a legacy monolithic system is labor-intensive and complex. Existing work on service candidate identification aims to group entities of a monolithic system into potential service candidates, but this process has two major challenges: first, it is difficult to extract service candidates with consistent quality; second, it is hard to evaluate the identified service candidates regarding the above three characteristics. To address these challenges, this paper proposes the Functionality-oriented Service Candidate Identification (FoSCI) framework to identify service candidates from a monolithic system. Our approach is to record the monolith's execution traces, and extract services candidates using a search-based functional atom grouping algorithm. We also contribute a comprehensive service candidate evaluation suite that uses interface information, structural/conceptual dependency, and commit history. This evaluation system consists of 8 metrics, measuring functionality, modularity, and evolvability respectively of identified service candidates. We compare FoSCI with three existing methods, using 6 widely-used open-source projects as our evaluation subjects. Our results show that FoSCI outperforms existing methods in most measures.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kelly完成签到,获得积分10
刚刚
fashing完成签到,获得积分10
1秒前
liang应助王啵啵采纳,获得10
1秒前
二六发布了新的文献求助10
1秒前
如意天荷发布了新的文献求助50
1秒前
2秒前
我是老大应助森气采纳,获得10
2秒前
3秒前
3秒前
potato完成签到,获得积分10
3秒前
3秒前
希望天下0贩的0应助久久采纳,获得10
4秒前
乖乖完成签到,获得积分10
5秒前
5秒前
zhz发布了新的文献求助10
5秒前
6秒前
灰灰完成签到,获得积分10
6秒前
科目三应助chao采纳,获得30
6秒前
斑驳的落叶完成签到,获得积分20
6秒前
7秒前
7秒前
Rickpinkman发布了新的文献求助10
7秒前
星逝发布了新的文献求助10
7秒前
8秒前
纠纠发布了新的文献求助10
9秒前
明亮沛珊应助胡医生采纳,获得10
9秒前
道阻且长发布了新的文献求助10
9秒前
9秒前
怕黑筝完成签到,获得积分10
10秒前
11秒前
pan完成签到,获得积分10
11秒前
ccy应助芷琪采纳,获得10
11秒前
在水一方应助和谐蛋蛋采纳,获得10
11秒前
打打应助二六采纳,获得10
11秒前
12秒前
养个小猪咪完成签到,获得积分20
12秒前
小李完成签到 ,获得积分10
13秒前
李君然完成签到,获得积分10
13秒前
森气发布了新的文献求助10
13秒前
jiojio发布了新的文献求助10
13秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 700
The Heath Anthology of American Literature: Early Nineteenth Century 1800 - 1865 Vol. B 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
Machine Learning for Polymer Informatics 500
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
2024 Medicinal Chemistry Reviews 480
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3221700
求助须知:如何正确求助?哪些是违规求助? 2870410
关于积分的说明 8170405
捐赠科研通 2537357
什么是DOI,文献DOI怎么找? 1369382
科研通“疑难数据库(出版商)”最低求助积分说明 645496
邀请新用户注册赠送积分活动 619179