Experimental and Numerical Optimization of Magnetic Adhesion Force for Wall Climbing Robot Applications

粘附 机器人 攀登 计算机科学 材料科学 结构工程 工程类 复合材料 人工智能
作者
Anwar Sahbel,Ayman Abbas,TP Sattar
出处
期刊:International journal of mechanical engineering and robotics research [EJournal Publishing]
卷期号:: 18-24 被引量:4
标识
DOI:10.18178/ijmerr.8.1.18-24
摘要

Wall climbing robots require adhesion methods which are suited to the climbing surface material and roughness. In this paper, an optimum design of a magnetic adhesion mechanism has been developed for ferrous surfaces that maximises the magnetic adhesion force. This in turn maximises the payload that can be carried by the climbing robot. Experiments have been designed using the Response Surface Methodology (RSM) to study the effect of identified independent parameters (namely the distance between magnets, air gap and yoke thickness) that affect the response variable i.e. the magnetic adhesion force. A quadratic regression model has been developed to represent an empirical relationship between the response variable and the independent variables. Statistical analysis of the predicted model has been investigated using analysis of variance (ANOVA). To inspect the adequacy of the predicted quadratic model, validating experiments have been carried out at different conditions where the experimental results showed similar response values to the predicted model responses. Numerical optimisation has been applied to predict the optimum variable conditions for maximum adhesion force and air gap, resulting in an adhesion force of 240.3 N at 20 mm distance between magnets, 18.5 mm air gap and 8.3 mm yoke thickness. The optimum conditions have been numerically validated using a commercial finite element simulator. The numerically optimised design parameters have been used to design and construct a prototype wall climbing robot.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
贾莆完成签到,获得积分10
刚刚
1秒前
li发布了新的文献求助10
1秒前
2秒前
慕青应助纯白采纳,获得10
4秒前
Akim应助王星星采纳,获得10
4秒前
医路向前发布了新的文献求助10
6秒前
sctaaa发布了新的文献求助10
7秒前
濮阳映萱完成签到,获得积分20
8秒前
9秒前
灵巧新瑶发布了新的文献求助10
9秒前
粉色小妖精完成签到,获得积分10
11秒前
思源应助麟钰采纳,获得10
12秒前
地震学牛马完成签到,获得积分10
12秒前
冷静乌龟发布了新的文献求助10
13秒前
wow发布了新的文献求助10
13秒前
优美霸完成签到,获得积分10
13秒前
14秒前
Asheldon完成签到,获得积分10
15秒前
sctaaa完成签到,获得积分10
16秒前
wss完成签到,获得积分10
17秒前
Dellamoffy完成签到,获得积分10
17秒前
李健应助小小采纳,获得10
17秒前
科研通AI2S应助liuzengzhang666采纳,获得10
17秒前
18秒前
纯白发布了新的文献求助10
19秒前
小马的可爱老婆完成签到,获得积分10
20秒前
wss发布了新的文献求助10
21秒前
xy完成签到,获得积分10
21秒前
23秒前
俊逸的无心完成签到,获得积分10
26秒前
27秒前
song_song完成签到,获得积分10
27秒前
27秒前
灵巧新瑶完成签到,获得积分10
28秒前
你的风筝应助柑橘采纳,获得10
28秒前
LiuH完成签到,获得积分20
29秒前
循环bug发布了新的文献求助10
29秒前
subvert完成签到,获得积分10
30秒前
WenN发布了新的文献求助10
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
Indomethacinのヒトにおける経皮吸収 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3997769
求助须知:如何正确求助?哪些是违规求助? 3537294
关于积分的说明 11271231
捐赠科研通 3276455
什么是DOI,文献DOI怎么找? 1807040
邀请新用户注册赠送积分活动 883639
科研通“疑难数据库(出版商)”最低求助积分说明 809982