Surface-Chemistry-Mediated Control of Individual Magnetic Helical Microswimmers in a Swarm

旋转(数学) 群体行为 绕固定轴旋转 转速 工作(物理) 化学 化学物理 纳米技术 生物系统 材料科学 物理 经典力学 热力学 计算机科学 人工智能 生物
作者
Xiaopu Wang,Chengzhi Hu,Lukas Schurz,Carmela De Marco,Xiang‐Zhong Chen,Salvador Pané,Bradley J. Nelson
出处
期刊:ACS Nano [American Chemical Society]
卷期号:12 (6): 6210-6217 被引量:123
标识
DOI:10.1021/acsnano.8b02907
摘要

Magnetic helical microswimmers, also known as artificial bacterial flagella (ABFs), perform 3D navigation in various liquids under low-strength rotating magnetic fields by converting rotational motion to translational motion. ABFs have been widely studied as carriers for targeted delivery and release of drugs and cells. For in vivo/in vitro therapeutic applications, control over individual groups of swimmers within a swarm is necessary for several biomedical applications such as drug delivery or small-scale surgery. In this work, we present the selective control of individual swimmers in a swarm of geometrically and magnetically identical ABFs by modifying their surface chemistry. We confirm experimentally and analytically that the forward/rotational velocity ratio of ABFs is independent of their surface coatings when the swimmers are operated below their step-out frequency (the frequency requiring the entire available magnetic torque to maintain synchronous rotation). We also show that ABFs with hydrophobic surfaces exhibit larger step-out frequencies and higher maximum forward velocities compared to their hydrophilic counterparts. Thus, selective control of a group of swimmers within a swarm of ABFs can be achieved by operating the selected ABFs at a frequency that is below their step-out frequencies but higher than the step-out frequencies of unselected ABFs. The feasibility of this method is investigated in water and in biologically relevant solutions. Selective control is also demonstrated inside a Y-shaped microfluidic channel. Our results present a systematic approach for realizing selective control within a swarm of magnetic helical microswimmers.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hongzhoux完成签到,获得积分10
1秒前
Hello应助阳光代容采纳,获得20
1秒前
1秒前
曾无忧发布了新的文献求助10
2秒前
COLLINS发布了新的文献求助10
2秒前
3秒前
zhoushaoyun2000完成签到,获得积分10
4秒前
haha发布了新的文献求助10
4秒前
左辄完成签到,获得积分10
5秒前
7秒前
大亮发布了新的文献求助10
7秒前
8秒前
10秒前
完美世界应助CATH采纳,获得10
11秒前
zhang狗子发布了新的文献求助10
12秒前
12秒前
14秒前
16秒前
ding应助a61采纳,获得30
16秒前
稚鱼应助Xc采纳,获得10
16秒前
烧烤发布了新的文献求助10
17秒前
大亮完成签到,获得积分10
17秒前
南桑发布了新的文献求助10
18秒前
充电宝应助深情的嫣然采纳,获得30
18秒前
小圆圈完成签到,获得积分10
18秒前
Emily发布了新的文献求助10
19秒前
liky发布了新的文献求助10
20秒前
20秒前
22秒前
22秒前
深情安青应助zhang狗子采纳,获得10
23秒前
yukang应助秋纳瑞采纳,获得10
26秒前
Hello应助粥粥采纳,获得30
26秒前
山海之间完成签到,获得积分10
27秒前
所所应助南桑采纳,获得10
27秒前
27秒前
showmaker完成签到,获得积分10
28秒前
HX发布了新的文献求助10
28秒前
29秒前
30秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Crystal Nonlinear Optics: with SNLO examples (Second Edition) 500
Essentials of Performance Analysis in Sport 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3732692
求助须知:如何正确求助?哪些是违规求助? 3276827
关于积分的说明 9999066
捐赠科研通 2992492
什么是DOI,文献DOI怎么找? 1642273
邀请新用户注册赠送积分活动 780263
科研通“疑难数据库(出版商)”最低求助积分说明 748720