清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Differential diagnosis of jaw pain using informatics technology

医学 鉴别诊断 颞下颌关节 病历 牙科 口腔正畸科 病理 内科学
作者
Yoon Kwon Nam,Hong‐Gee Kim,Hong‐Seop Kho
出处
期刊:Journal of Oral Rehabilitation [Wiley]
卷期号:45 (8): 581-588 被引量:19
标识
DOI:10.1111/joor.12655
摘要

Summary This study aimed to deduce evidence‐based clinical clues that differentiate temporomandibular disorders ( TMD )‐mimicking conditions from genuine TMD by text mining using natural language processing ( NLP ) and recursive partitioning. We compared the medical records of 29 patients diagnosed with TMD ‐mimicking conditions and 290 patients diagnosed with genuine TMD . Chief complaints and medical histories were preprocessed via NLP to compare the frequency of word usage. In addition, recursive partitioning was used to deduce the optimal size of mouth opening, which could differentiate TMD ‐mimicking from genuine TMD groups. The prevalence of TMD ‐mimicking conditions was more evenly distributed across all age groups and showed a nearly equal gender ratio, which was significantly different from genuine TMD . TMD ‐mimicking conditions were caused by inflammation, infection, hereditary disease and neoplasm. Patients with TMD ‐mimicking conditions frequently used “mouth opening limitation” ( P < .001), but less commonly used words such as “noise” ( P < .001) and “temporomandibular joint” ( P < .001) than patients with genuine TMD . A diagnostic classification tree on the basis of recursive partitioning suggested that 12.0 mm of comfortable mouth opening and 26.5 mm of maximum mouth opening were deduced as the most optimal mouth‐opening cutoff sizes. When the combined analyses were performed based on both the text mining and clinical examination data, the predictive performance of the model was 96.6% with 69.0% sensitivity and 99.3% specificity in predicting TMD ‐mimicking conditions. In conclusion, this study showed that AI technology‐based methods could be applied in the field of differential diagnosis of orofacial pain disorders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
依然灬聆听完成签到,获得积分10
57秒前
感性的道之完成签到 ,获得积分10
1分钟前
小巧的怜晴完成签到 ,获得积分10
1分钟前
1分钟前
1分钟前
阿宝完成签到 ,获得积分10
1分钟前
wangye完成签到 ,获得积分10
2分钟前
方琼燕完成签到 ,获得积分10
3分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
3分钟前
科目三应助zhouleiwang采纳,获得10
3分钟前
丘比特应助帮帮我好吗采纳,获得10
3分钟前
4分钟前
快乐小狗发布了新的文献求助10
4分钟前
4分钟前
Meredith完成签到,获得积分10
4分钟前
乐乐应助快乐小狗采纳,获得30
4分钟前
5分钟前
5分钟前
5分钟前
呼风唤雨发布了新的文献求助10
5分钟前
繁馥然发布了新的文献求助20
5分钟前
呼风唤雨完成签到,获得积分10
5分钟前
marska完成签到,获得积分10
6分钟前
繁馥然完成签到,获得积分10
6分钟前
6分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
6分钟前
7分钟前
章铭-111发布了新的文献求助10
7分钟前
章铭-111完成签到,获得积分10
7分钟前
7分钟前
白华苍松发布了新的文献求助10
7分钟前
7分钟前
葛力发布了新的文献求助10
7分钟前
Eric800824完成签到 ,获得积分10
8分钟前
poegtam完成签到,获得积分10
8分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
8分钟前
严珍珍完成签到 ,获得积分10
9分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
9分钟前
9分钟前
科研通AI2S应助帮帮我好吗采纳,获得10
9分钟前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3137021
求助须知:如何正确求助?哪些是违规求助? 2787992
关于积分的说明 7784214
捐赠科研通 2444073
什么是DOI,文献DOI怎么找? 1299719
科研通“疑难数据库(出版商)”最低求助积分说明 625513
版权声明 600997