Adjusting for Time Trends When Estimating the Relationship between Dietary Intake Obtained from a Food Frequency Questionnaire and True Average Intake

统计 先锋 差异(会计) 计量经济学 数学 人口 食物频率问卷 医学 环境卫生 地理 经济 会计 考古
作者
R Landin,Laurence S. Freedman,Raymond J. Carroll
出处
期刊:Biometrics [Wiley]
卷期号:51 (1): 169-169 被引量:11
标识
DOI:10.2307/2533323
摘要

In measuring food intake, three common methods are used: 24-hour recalls, food frequency questionnaires and food records. Food records or 24-hour recalls are often thought to be the most reliable, but they are difficult and expensive to obtain. The question of interest to us is to use the food records or 24-hour recalls to examine possible systematic biases in questionnaires as a measure of usual food intake. In Freedman, et al. (1991), this problem is addressed through a linear errors in variables analysis. Their model assumes that all measurements on a given individual have the same mean and variance. However, such assumptions may be violated in at least two circumstances, as in for example the Women's Health Trial Vanguard Study and in the Finnish Smokers' Study. First, some studies occur over a period of years, and diets may change over the course of the study. Second, measurements might be taken at different times of the year, and it is known that diets differ on the basis of seasonal factors. In this paper, we will suggest new models incorporating mean and variance offsets, i.e., changes in the population mean and variance for observations taken at different time points. The parameters in the model are estimated by simple methods, and the theory of unbiased estimating equations (M-estimates) is used to derive asymptotic covariance matrix estimates. The methods are illustrated with data from the Women's Health Trial Vanguard Study.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
jify发布了新的文献求助10
1秒前
瞳梦完成签到,获得积分10
1秒前
1秒前
yueyue完成签到,获得积分10
1秒前
2秒前
yoyo20012623完成签到,获得积分10
3秒前
3秒前
白日焰火完成签到 ,获得积分10
5秒前
大个应助Warsaw采纳,获得10
5秒前
..完成签到,获得积分10
6秒前
Curllen完成签到,获得积分10
6秒前
diqiu发布了新的文献求助10
6秒前
KK发布了新的文献求助10
6秒前
领导范儿应助邵玉莹采纳,获得10
8秒前
yuiiuy发布了新的文献求助10
10秒前
坦率的惊蛰完成签到,获得积分10
11秒前
12秒前
bzc229完成签到,获得积分10
13秒前
13秒前
顾末完成签到,获得积分10
14秒前
15秒前
小木木壮应助yuiiuy采纳,获得10
16秒前
热心市民小红花应助yuiiuy采纳,获得10
16秒前
lanmin发布了新的文献求助30
18秒前
77完成签到,获得积分10
18秒前
bobo1129发布了新的文献求助10
18秒前
18秒前
昏睡的傻姑完成签到,获得积分10
18秒前
yzlsci完成签到,获得积分0
19秒前
yyy发布了新的文献求助10
19秒前
Warsaw发布了新的文献求助10
20秒前
StarChen完成签到,获得积分20
20秒前
汉堡包应助夏侯乐枫采纳,获得20
21秒前
小仙虎殿下完成签到 ,获得积分10
22秒前
BaBa发布了新的文献求助10
22秒前
jify完成签到,获得积分10
24秒前
乐乐应助南兮采纳,获得10
24秒前
今何在完成签到,获得积分10
25秒前
茶多酚完成签到,获得积分10
26秒前
高分求助中
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
Mantodea of the World: Species Catalog Andrew M 500
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3464070
求助须知:如何正确求助?哪些是违规求助? 3057259
关于积分的说明 9056694
捐赠科研通 2747427
什么是DOI,文献DOI怎么找? 1507362
科研通“疑难数据库(出版商)”最低求助积分说明 696491
邀请新用户注册赠送积分活动 696004