清道夫受体
受体
细胞生物学
内吞作用
细胞外
先天免疫系统
生物
细胞内
信号转导
免疫系统
化学
生物化学
免疫学
胆固醇
脂蛋白
出处
期刊:PubMed
日期:2012-02-29
卷期号:66: 104-19
被引量:7
标识
DOI:10.5604/17322693.984079
摘要
Recognition of pathogens by innate immune cells is mediated by pattern recognition receptors (PRR), which include scavenger receptors (SR). The class A SR, SR-A/CD204 and MARCO, are characterized by the presence of collagenous and SR cysteine-rich domains in their extracellular portions. Both receptors are expressed mainly on macrophages and dendritic cells. Thanks to their ability to bind to a wide range of polyanionic ligands, the class A SR may participate in numerous functions of these cells, such as endocytosis, and adhesion to extracellular matrix and to other cells. Among SR-A ligands are oxidized lipoproteins and β-amyloid fibrils, which link SR-A to the pathogenesis of arteriosclerosis and Alzheimer's disease. Despite the demonstration of class A SR involvement in so many processes, the lack of selective ligands precluded reaching definite conclusions concerning their signaling abilities. Using specific receptor ligation with antibodies, we showed that SR-A and MARCO trigger intracellular signaling, modulating pro-inflammatory and microbicidal activities of macrophages. Surprisingly, despite similarities in structure and ligand binding repertoires, SR-A and MARCO exert opposite effects on interleukin-12 (IL-12) production in macrophages. SR-A ligation also stimulated H₂O₂ and IL-10 production, but had no effect on the release of several other cytokines. These limited effects of specific SR-A ligation contrast with generalized enhancement of immune responses observed in SR-A-deficient mice. Recent studies have revealed that many of these effects of SR-A deficiency may be caused by compensatory changes in the expression of other receptors and/or disinhibition of signal transduction from receptors belonging to the Toll/IL-1R family, rather than by the loss of the receptor function of SR-A.
科研通智能强力驱动
Strongly Powered by AbleSci AI