Control of spin–orbit torques through crystal symmetry in WTe2/ferromagnet bilayers

凝聚态物理 铁磁性 对称(几何) 物理 磁各向异性 磁场 磁化 量子力学 几何学 数学
作者
David MacNeill,Gregory M. Stiehl,Marcos H. D. Guimarães,R. A. Buhrman,Jiwoong Park,Daniel C. Ralph
出处
期刊:Nature Physics [Springer Nature]
卷期号:13 (3): 300-305 被引量:738
标识
DOI:10.1038/nphys3933
摘要

Recent discoveries regarding current-induced spin–orbit torques produced by heavy-metal/ferromagnet and topological-insulator/ferromagnet bilayers provide the potential for dramatically improved efficiency in the manipulation of magnetic devices. However, in experiments performed to date, spin–orbit torques have an important limitation—the component of torque that can compensate magnetic damping is required by symmetry to lie within the device plane. This means that spin–orbit torques can drive the most current-efficient type of magnetic reversal (antidamping switching) only for magnetic devices with in-plane anisotropy, not the devices with perpendicular magnetic anisotropy that are needed for high-density applications. Here we show experimentally that this state of affairs is not fundamental, but rather one can change the allowed symmetries of spin–orbit torques in spin-source/ferromagnet bilayer devices by using a spin-source material with low crystalline symmetry. We use WTe2, a transition-metal dichalcogenide whose surface crystal structure has only one mirror plane and no two-fold rotational invariance. Consistent with these symmetries, we generate an out-of-plane antidamping torque when current is applied along a low-symmetry axis of WTe2/Permalloy bilayers, but not when current is applied along a high-symmetry axis. Controlling spin–orbit torques by crystal symmetries in multilayer samples provides a new strategy for optimizing future magnetic technologies. A link between crystalline symmetry and the allowed symmetries of spin–orbit torques provides a route for manipulating magnetic devices with perpendicular anisotropy.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
1秒前
Jiang 小白完成签到,获得积分10
1秒前
肉卷发布了新的文献求助10
1秒前
kkkk发布了新的文献求助10
2秒前
2秒前
无花果应助cistronic采纳,获得10
2秒前
2秒前
CipherSage应助dhbhjvarivnz采纳,获得10
3秒前
3秒前
研友_n0GBAL发布了新的文献求助30
4秒前
感动城发布了新的文献求助10
4秒前
4秒前
Ava应助Cindy采纳,获得10
4秒前
大鱼头发布了新的文献求助10
4秒前
华仔应助JunHan采纳,获得10
4秒前
5秒前
冷静曼岚完成签到,获得积分10
5秒前
Hello应助舒适的小蜜蜂采纳,获得10
6秒前
量子星尘发布了新的文献求助10
6秒前
我是老大应助W_x采纳,获得10
6秒前
7秒前
SHAO发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
大鱼头完成签到,获得积分10
8秒前
时尚的八宝粥完成签到,获得积分10
9秒前
勤恳万宝路完成签到,获得积分10
9秒前
9秒前
10秒前
10秒前
10秒前
领导范儿应助科研小白采纳,获得10
11秒前
研友_LXOOJ8完成签到,获得积分10
11秒前
可可子完成签到,获得积分20
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
Cummings Otolaryngology Head and Neck Surgery 8th Edition 800
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5760069
求助须知:如何正确求助?哪些是违规求助? 5523381
关于积分的说明 15396422
捐赠科研通 4896997
什么是DOI,文献DOI怎么找? 2634002
邀请新用户注册赠送积分活动 1582062
关于科研通互助平台的介绍 1537519