软骨发生
脚手架
化学
生物医学工程
软骨
基质(化学分析)
组织工程
干细胞
细胞生物学
体外
材料科学
解剖
生物
生物化学
医学
色谱法
作者
Gun‐Il Im,Ji‐Yun Ko,Jin Ho Lee
标识
DOI:10.3727/096368912x638865
摘要
This study examined how the difference in pore size of porous scaffolds affected the in vitro chondrogenic differentiation of seeded adipose stem cells (ASCs) and the in vivo cartilage repair of ASC/scaffold construct. ASCs were isolated from 18 rabbits and seeded in a porous poly (ε-caprolactone) (PCL) scaffold with different pore sizes (100, 200, 400 μm). The ASCs underwent in vitro chondrogenic induction under TGF-β 2 and BMP-7 for 21 days before analysis. The ASC/scaffold construct was also implanted on the osteochondral defect created on the distal femur of the same rabbits, and the quality of cartilage regeneration was analyzed after 8 weeks. At day 21, the ASCs proliferated and spread on the surface of the scaffolds with a pore size 100 and 200 μm, whereas there were many lumps of conglomerated ASCs on those with a pore size of 400 μm. The DNA content was significantly lower in the scaffold with a pore size of 400 μm than in that with a pore size of 100 or 200 μm. Proteoglycan production was significantly greater in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm. The chondrogenic marker gene expression including SOX9 and COL2A1 was greatest in the scaffold with a pore size of 400 μm followed by 200 μm. Immunofluorescent imaging showed that, while SOX9 was localized to nucleus, type II collagen was observed on the cytoplasm and secreted matrix around the cells most abundantly in the scaffold with a pore size of 400 μm followed by 200 μm. The gross and histological findings from the osteochondral defects showed that the cartilage repair was better in the scaffold with a pore size of 400 and 200 μm than in that with a pore size of 100 μm.
科研通智能强力驱动
Strongly Powered by AbleSci AI