锡
电极
电解
化学
氧化锡
法拉第效率
氧化物
无机化学
催化作用
金属
电化学
化学工程
有机化学
物理化学
工程类
电解质
生物化学
作者
Yihong Chen,Matthew W. Kanan
摘要
The importance of tin oxide (SnO(x)) to the efficiency of CO(2) reduction on Sn was evaluated by comparing the activity of Sn electrodes that had been subjected to different pre-electrolysis treatments. In aqueous NaHCO(3) solution saturated with CO(2), a Sn electrode with a native SnO(x) layer exhibited potential-dependent CO(2) reduction activity consistent with previously reported activity. In contrast, an electrode etched to expose fresh Sn(0) surface exhibited higher overall current densities but almost exclusive H(2) evolution over the entire 0.5 V range of potentials examined. Subsequently, a thin-film catalyst was prepared by simultaneous electrodeposition of Sn(0) and SnO(x) on a Ti electrode. This catalyst exhibited up to 8-fold higher partial current density and 4-fold higher faradaic efficiency for CO(2) reduction than a Sn electrode with a native SnO(x) layer. Our results implicate the participation of SnO(x) in the CO(2) reduction pathway on Sn electrodes and suggest that metal/metal oxide composite materials are promising catalysts for sustainable fuel synthesis.
科研通智能强力驱动
Strongly Powered by AbleSci AI