CapillaryNet: An automated system to quantify skin capillary density and red blood cell velocity from handheld vital microscopy

毛细管作用 计算机科学 微循环 红细胞压积 移动设备 生物医学工程 卷积神经网络 显微术 血流 人工智能 计算机视觉 材料科学 医学 心脏病学 放射科 内科学 操作系统 复合材料 细胞生物学 生物
作者
Helmy M,Dykyy A,Truong Tt,Ferreira P,Jul E
出处
期刊:Artificial Intelligence in Medicine [Elsevier]
卷期号:127: 102287-102287 被引量:1
标识
DOI:10.1016/j.artmed.2022.102287
摘要

Capillaries are the smallest vessels in the body which are responsible for delivering oxygen and nutrients to surrounding cells. Various life-threatening diseases are known to alter the density of healthy capillaries and the flow velocity of erythrocytes within the capillaries. In previous studies, capillary density and flow velocity were manually assessed by trained specialists. However, manual analysis of a standard 20-s microvascular video requires 20 min on average and necessitates extensive training. Thus, manual analysis has been reported to hinder the application of microvascular microscopy in a clinical environment. To address this problem, this paper presents a fully automated state-of-the-art system to quantify skin nutritive capillary density and red blood cell velocity captured by handheld-based microscopy videos. The proposed method combines the speed of traditional computer vision algorithms with the accuracy of convolutional neural networks to enable clinical capillary analysis. The results show that the proposed system fully automates capillary detection with an accuracy exceeding that of trained analysts and measures several novel microvascular parameters that had eluded quantification thus far, namely, capillary hematocrit and intracapillary flow velocity heterogeneity. The proposed end-to-end system, named CapillaryNet, can detect capillaries at ~0.9 s per frame with ~93% accuracy. The system is currently used as a clinical research product in a larger e-health application to analyse capillary data captured from patients suffering from COVID-19, pancreatitis, and acute heart diseases. CapillaryNet narrows the gap between the analysis of microcirculation images in a clinical environment and state-of-the-art systems.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ixueyi发布了新的文献求助10
刚刚
水1111发布了新的文献求助10
1秒前
小丽酱发布了新的文献求助10
1秒前
Hty1764完成签到,获得积分10
1秒前
能干的棉花糖完成签到,获得积分10
2秒前
3秒前
3秒前
Evan应助费费Queen采纳,获得10
8秒前
任梓宁发布了新的文献求助10
8秒前
Gan完成签到,获得积分10
8秒前
研友_VZG7GZ应助yrt采纳,获得10
8秒前
8秒前
十月发布了新的文献求助10
9秒前
华仔应助旋转木马9个采纳,获得10
10秒前
浔城游侠完成签到,获得积分10
10秒前
Az完成签到,获得积分10
11秒前
12秒前
12秒前
xiaopingbing完成签到 ,获得积分10
12秒前
SciGPT应助Aventen采纳,获得10
12秒前
Aurora完成签到,获得积分10
14秒前
16秒前
jzyy发布了新的文献求助10
17秒前
103921wjk完成签到,获得积分10
17秒前
Ergou完成签到 ,获得积分20
17秒前
史道夫发布了新的文献求助10
19秒前
dizi_88应助zhaozhao采纳,获得10
21秒前
znlion完成签到,获得积分10
21秒前
ILUIGANG发布了新的文献求助30
21秒前
21秒前
努力上进的小张完成签到,获得积分10
22秒前
书霂完成签到,获得积分10
23秒前
fuje完成签到,获得积分10
24秒前
25秒前
28秒前
28秒前
28秒前
fifteen发布了新的文献求助10
30秒前
bkagyin应助平淡的文龙采纳,获得10
31秒前
fuje发布了新的文献求助10
32秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
An Introduction to Geographical and Urban Economics: A Spiky World Book by Charles van Marrewijk, Harry Garretsen, and Steven Brakman 600
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3153568
求助须知:如何正确求助?哪些是违规求助? 2804730
关于积分的说明 7861428
捐赠科研通 2462728
什么是DOI,文献DOI怎么找? 1310940
科研通“疑难数据库(出版商)”最低求助积分说明 629428
版权声明 601809