Advantage of conductive materials on interspecies electron transfer-independent acetoclastic methanogenesis: A critical review

产甲烷 厌氧消化 甲烷 古细菌 化学 甲烷八叠球菌 微生物生态学 电子转移 氧化还原 细菌 环境化学 生物 生态学 无机化学 遗传学 有机化学
作者
Leilei Xiao,Eric Lichtfouse,Pankaj Kumar
出处
期刊:Fuel [Elsevier]
卷期号:305: 121577-121577 被引量:18
标识
DOI:10.1016/j.fuel.2021.121577
摘要

Fossil-fuel overuse and global warming are calling for new techniques to provide sustainable fuels. Biomethane can be produced by anaerobic digestion of organic waste, yet microbial mechanisms involved are still debated. Traditionally, reduction of carbon dioxide (CO2) to methane (CH4) is commonly explained by interspecies electron transfer, i. e., direct interspecies electron transfer (DIET)-based CO2 reduction or mediated interspecies electron transfer (MIET)-based CO2 reduction. For DIET-based CO2 reduction, or DIET-CO2 reduction, where electrons are provided by electricigens and transferred to methanogenic archaea to complete CO2 reduction for methane production. Methanogenesis is also executed and facilitated by acetoclastic methanogenesis in the presence of conductive materials, as evidenced recently. Here we compare DIET-CO2 reduction and acetoclastic methanogenesis mediated by conductive materials. In the past decade, DIET-CO2 reduction is considered as the backbone for methane production strategy in anaerobic engineering digestion. But increasing evidences propose the importance of acetoclastic methanogenesis strengthened by exogenous media. DIET-based CO2 reduction has been extensively reviewed. Herein, we conclude the diverse microbial mechanisms affected by conductive materials to improve potential acetoclastic methanogenesis for the first time. Increasing electron transfer in methanogenic archaea and/or between bacteria and methanogens, microbial immobilization, pH buffering capacity, providing metal ions, reducing toxicity, regulation of oxidation-reduction potential are detailed reviewed. Possible future application based on acetotrophic methanogens is suggested via conductive materials in anaerobic digestion and natural ecological environment management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mmuoo完成签到,获得积分10
刚刚
韦小艺发布了新的文献求助10
刚刚
1秒前
1秒前
2秒前
111发布了新的文献求助10
2秒前
2秒前
俟天晴完成签到,获得积分10
2秒前
英姑应助糊涂的凡采纳,获得10
2秒前
叶青文完成签到,获得积分20
3秒前
一一完成签到,获得积分10
3秒前
xgz发布了新的文献求助10
4秒前
劲秉应助威武的采柳采纳,获得30
4秒前
科研通AI5应助Cynthia采纳,获得30
4秒前
kingwill应助ru采纳,获得20
4秒前
4秒前
现代的寒松完成签到,获得积分20
4秒前
小草发布了新的文献求助10
4秒前
Ray完成签到,获得积分10
4秒前
细心蚂蚁发布了新的文献求助20
4秒前
罗汉完成签到 ,获得积分10
5秒前
正月初九完成签到,获得积分10
5秒前
5秒前
寻一完成签到,获得积分10
6秒前
night发布了新的文献求助10
7秒前
zhiwei发布了新的文献求助10
8秒前
烂漫亦云发布了新的文献求助10
8秒前
8秒前
所所应助建设采纳,获得10
8秒前
Jasper应助小竹子采纳,获得10
9秒前
cc发布了新的文献求助10
9秒前
orixero应助热情的戾采纳,获得10
10秒前
研友_VZG7GZ应助热情的戾采纳,获得10
10秒前
李爱国应助热情的戾采纳,获得10
10秒前
桐桐应助热情的戾采纳,获得10
10秒前
赘婿应助热情的戾采纳,获得10
10秒前
小马甲应助热情的戾采纳,获得10
10秒前
10秒前
深情安青应助热情的戾采纳,获得10
10秒前
Owen应助热情的戾采纳,获得10
10秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Covalent Organic Frameworks 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3481399
求助须知:如何正确求助?哪些是违规求助? 3071505
关于积分的说明 9122297
捐赠科研通 2763255
什么是DOI,文献DOI怎么找? 1516352
邀请新用户注册赠送积分活动 701541
科研通“疑难数据库(出版商)”最低求助积分说明 700339