First Arrival Picking on Microseismic Signals Based on K-Means with a ReliefF Algorithm

微震 计算机科学 聚类分析 算法 特征选择 噪音(视频) 模式识别(心理学) 特征(语言学) 信号(编程语言) 人工智能 数据挖掘 地质学 地震学 哲学 程序设计语言 图像(数学) 语言学
作者
Yijia Li,Zhengfang Wang,Jing Wang,Qingmei Sui,Shufan Li,Hanpeng Wang,Zhiguo Cao
出处
期刊:Symmetry [MDPI AG]
卷期号:13 (5): 790-790 被引量:5
标识
DOI:10.3390/sym13050790
摘要

The quick and accurate picking of the first arrival on microseismic signals is one of the critical processing steps of microseismic monitoring. This study proposed a first arrival picking method for application to microseismic data with a low signal-to-noise ratio (SNR). This approach consisted of two steps: feature selection and clustering. First of all, the optimal feature was searched automatically using the ReliefF algorithm according to the weight distribution of the signal features, and without manual design. On that basis, a k-means clustering method was adopted to classify the microseismic data with symmetry (0–1), and the first arrival times were accurately picked. The proposed method was validated using the synthetic data with different noise levels and real microseismic data. The comparative study results indicated that the proposed method had obviously outperformed the classical STA/LTA and the k-means without feature selection. Finally, the microseismic localization of the first arrivals picked using the various methods were compared. The positioning errors were analyzed using box plots with symmetric effect, and those of the proposed method were the smallest, and stable (all of which were less than 0.5 m), which further verified the superiority of this study’s proposed method and its potential in processing complicated microseismic datasets.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
隐形曼青应助ZHANG采纳,获得10
刚刚
时光路人发布了新的文献求助10
1秒前
hchen完成签到 ,获得积分10
2秒前
pegasus0802完成签到,获得积分10
2秒前
思源应助xiaoma采纳,获得10
3秒前
沉静智宸完成签到 ,获得积分10
4秒前
5秒前
5秒前
炙热的雪糕完成签到,获得积分10
5秒前
gxpjzbg完成签到,获得积分10
6秒前
打打应助卡卡采纳,获得30
6秒前
英姑应助xiaoying采纳,获得10
7秒前
科研通AI2S应助刘辉采纳,获得10
7秒前
深情安青应助可靠的雁山采纳,获得10
7秒前
7秒前
8秒前
柒咩咩完成签到 ,获得积分10
8秒前
9秒前
可爱的函函应助xuan采纳,获得10
9秒前
我是老大应助LI采纳,获得10
9秒前
bxw发布了新的文献求助10
10秒前
BaekHyun完成签到,获得积分10
10秒前
10秒前
10秒前
xjp完成签到,获得积分10
10秒前
10秒前
狂野世立完成签到,获得积分10
10秒前
小岚乖乖完成签到,获得积分10
11秒前
lalala发布了新的文献求助10
11秒前
11秒前
penghaha发布了新的文献求助10
12秒前
12秒前
Sevi完成签到,获得积分10
12秒前
13秒前
灵梦柠檬酸完成签到,获得积分10
13秒前
eden完成签到,获得积分10
13秒前
luo完成签到,获得积分10
14秒前
DSUNNY发布了新的文献求助10
14秒前
Wayne完成签到,获得积分10
14秒前
zhuyinghao发布了新的文献求助50
14秒前
高分求助中
Evolution 10000
Becoming: An Introduction to Jung's Concept of Individuation 600
Distribution Dependent Stochastic Differential Equations 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
A new species of Velataspis (Hemiptera Coccoidea Diaspididae) from tea in Assam 500
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 500
The Kinetic Nitration and Basicity of 1,2,4-Triazol-5-ones 440
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3158884
求助须知:如何正确求助?哪些是违规求助? 2810072
关于积分的说明 7885775
捐赠科研通 2468916
什么是DOI,文献DOI怎么找? 1314424
科研通“疑难数据库(出版商)”最低求助积分说明 630616
版权声明 602012