A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning

计算机科学 图形模型 领域(数学) 水准点(测量) 概率逻辑 数据科学 多样性(控制论) 任务(项目管理) 深度学习 人工智能 分类学(生物学) 代表(政治) 分拆(数论) 机器学习 数据挖掘 系统工程 工程类 组合数学 政治 数学 政治学 法学 纯数学 地理 大地测量学 生物 植物
作者
Di Jin,Zhizhi Yu,Pengfei Jiao,Shirui Pan,Dongxiao He,Jia Wu,Philip L. H. Yu,Weixiong Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:351
标识
DOI:10.1109/tkde.2021.3104155
摘要

Community detection, a fundamental task for network analysis, aims to partition a network into multiple sub-structures to help reveal their latent functions. Community detection has been extensively studied in and broadly applied to many real-world network problems. Classical approaches to community detection typically utilize probabilistic graphical models and adopt a variety of prior knowledge to infer community structures. As the problems that network methods try to solve and the network data to be analyzed become increasingly more sophisticated, new approaches have also been proposed and developed, particularly those that utilize deep learning and convert networked data into low dimensional representation. Despite all the recent advancement, there is still a lack of insightful understanding of the theoretical and methodological underpinning of community detection, which will be critically important for future development of the area of network analysis. In this paper, we develop and present a unified architecture of network community-finding methods to characterize the state-of-the-art of the field of community detection. Specifically, we provide a comprehensive review of the existing community detection methods and introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning. We then discuss in detail the main idea behind each method in the two categories. Furthermore, to promote future development of community detection, we release several benchmark datasets from several problem domains and highlight their applications to various network analysis tasks. We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
陀罗尼烈珀完成签到,获得积分10
2秒前
超级碧曼发布了新的文献求助10
2秒前
犹豫山菡完成签到,获得积分10
3秒前
HCl完成签到,获得积分10
4秒前
4秒前
5秒前
Owen应助11111采纳,获得10
5秒前
yjdong发布了新的文献求助10
6秒前
躺着睡觉完成签到 ,获得积分10
6秒前
慕青应助搞怪的鱼采纳,获得10
6秒前
ELITOmiko完成签到,获得积分10
6秒前
7秒前
QWSS完成签到,获得积分20
7秒前
DXDXJX完成签到,获得积分0
8秒前
ding应助可靠的寒风采纳,获得10
8秒前
科研通AI6应助包容代芹采纳,获得10
9秒前
9秒前
Planck发布了新的文献求助10
9秒前
1x3完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
11秒前
危机的易梦完成签到,获得积分10
12秒前
优TT发布了新的文献求助10
13秒前
13秒前
14秒前
14秒前
14秒前
15秒前
王科完成签到,获得积分10
16秒前
GGbond完成签到,获得积分10
16秒前
吴巷玉完成签到,获得积分10
16秒前
17秒前
软软萌萌关注了科研通微信公众号
17秒前
17秒前
17秒前
叶95发布了新的文献求助30
18秒前
18秒前
超级碧曼完成签到,获得积分10
18秒前
搞怪的鱼发布了新的文献求助10
19秒前
SciGPT应助摸鱼鱼采纳,获得10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Binary Alloy Phase Diagrams, 2nd Edition 8000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
From Victimization to Aggression 1000
Study and Interlaboratory Validation of Simultaneous LC-MS/MS Method for Food Allergens Using Model Processed Foods 500
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5646495
求助须知:如何正确求助?哪些是违规求助? 4771505
关于积分的说明 15035374
捐赠科研通 4805305
什么是DOI,文献DOI怎么找? 2569593
邀请新用户注册赠送积分活动 1526581
关于科研通互助平台的介绍 1485858