A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning

计算机科学 图形模型 领域(数学) 水准点(测量) 概率逻辑 数据科学 多样性(控制论) 任务(项目管理) 深度学习 人工智能 分类学(生物学) 代表(政治) 分拆(数论) 机器学习 数据挖掘 系统工程 工程类 组合数学 政治 数学 政治学 法学 纯数学 地理 大地测量学 生物 植物
作者
Di Jin,Zhizhi Yu,Pengfei Jiao,Shirui Pan,Dongxiao He,Jia Wu,Philip L. H. Yu,Weixiong Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [IEEE Computer Society]
卷期号:: 1-1 被引量:258
标识
DOI:10.1109/tkde.2021.3104155
摘要

Community detection, a fundamental task for network analysis, aims to partition a network into multiple sub-structures to help reveal their latent functions. Community detection has been extensively studied in and broadly applied to many real-world network problems. Classical approaches to community detection typically utilize probabilistic graphical models and adopt a variety of prior knowledge to infer community structures. As the problems that network methods try to solve and the network data to be analyzed become increasingly more sophisticated, new approaches have also been proposed and developed, particularly those that utilize deep learning and convert networked data into low dimensional representation. Despite all the recent advancement, there is still a lack of insightful understanding of the theoretical and methodological underpinning of community detection, which will be critically important for future development of the area of network analysis. In this paper, we develop and present a unified architecture of network community-finding methods to characterize the state-of-the-art of the field of community detection. Specifically, we provide a comprehensive review of the existing community detection methods and introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning. We then discuss in detail the main idea behind each method in the two categories. Furthermore, to promote future development of community detection, we release several benchmark datasets from several problem domains and highlight their applications to various network analysis tasks. We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
蒸馒头争气完成签到,获得积分10
刚刚
思源应助怡然的煜城采纳,获得80
1秒前
Billy发布了新的文献求助10
1秒前
1秒前
热心的水瑶完成签到,获得积分20
2秒前
水何澹澹完成签到,获得积分0
3秒前
随意发布了新的文献求助10
3秒前
lvjiahui发布了新的文献求助10
3秒前
FashionBoy应助echo采纳,获得10
3秒前
3秒前
3秒前
miumiu发布了新的文献求助10
4秒前
桐桐应助热心的棒棒糖采纳,获得10
4秒前
粉色的小天鹅完成签到,获得积分20
4秒前
猴哥完成签到,获得积分10
5秒前
yuanquaner发布了新的文献求助10
5秒前
夹谷蕈完成签到 ,获得积分10
6秒前
小张爱学习完成签到,获得积分10
8秒前
深情安青应助读者采纳,获得10
8秒前
8秒前
9秒前
科研修沟完成签到 ,获得积分10
9秒前
孤独紫真发布了新的文献求助10
9秒前
研友_VZG7GZ应助明理的青寒采纳,获得10
10秒前
11秒前
李爱国应助何寒松采纳,获得10
11秒前
11秒前
Jess完成签到,获得积分10
11秒前
12秒前
12秒前
13秒前
13秒前
13秒前
14秒前
Owen应助lan采纳,获得10
14秒前
平安喜乐发布了新的文献求助20
14秒前
15秒前
kk发布了新的文献求助10
15秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Comparison of adverse drug reactions of heparin and its derivates in the European Economic Area based on data from EudraVigilance between 2017 and 2021 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3952038
求助须知:如何正确求助?哪些是违规求助? 3497457
关于积分的说明 11087593
捐赠科研通 3228096
什么是DOI,文献DOI怎么找? 1784669
邀请新用户注册赠送积分活动 868839
科研通“疑难数据库(出版商)”最低求助积分说明 801198