A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning

计算机科学 图形模型 领域(数学) 水准点(测量) 概率逻辑 数据科学 多样性(控制论) 任务(项目管理) 深度学习 人工智能 分类学(生物学) 代表(政治) 分拆(数论) 机器学习 数据挖掘 系统工程 工程类 组合数学 政治 数学 政治学 法学 纯数学 地理 大地测量学 生物 植物
作者
Di Jin,Zhizhi Yu,Pengfei Jiao,Shirui Pan,Dongxiao He,Jia Wu,Philip L. H. Yu,Weixiong Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:351
标识
DOI:10.1109/tkde.2021.3104155
摘要

Community detection, a fundamental task for network analysis, aims to partition a network into multiple sub-structures to help reveal their latent functions. Community detection has been extensively studied in and broadly applied to many real-world network problems. Classical approaches to community detection typically utilize probabilistic graphical models and adopt a variety of prior knowledge to infer community structures. As the problems that network methods try to solve and the network data to be analyzed become increasingly more sophisticated, new approaches have also been proposed and developed, particularly those that utilize deep learning and convert networked data into low dimensional representation. Despite all the recent advancement, there is still a lack of insightful understanding of the theoretical and methodological underpinning of community detection, which will be critically important for future development of the area of network analysis. In this paper, we develop and present a unified architecture of network community-finding methods to characterize the state-of-the-art of the field of community detection. Specifically, we provide a comprehensive review of the existing community detection methods and introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning. We then discuss in detail the main idea behind each method in the two categories. Furthermore, to promote future development of community detection, we release several benchmark datasets from several problem domains and highlight their applications to various network analysis tasks. We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
ZZyy完成签到 ,获得积分10
1秒前
1秒前
领导范儿应助张火火采纳,获得10
2秒前
祺仔发布了新的文献求助10
2秒前
2秒前
2秒前
2秒前
小柚完成签到,获得积分10
3秒前
3秒前
聪明乐儿发布了新的文献求助10
4秒前
4秒前
无限尔云发布了新的文献求助10
5秒前
IAN完成签到,获得积分20
5秒前
zw发布了新的文献求助10
5秒前
11完成签到,获得积分10
6秒前
希望天下0贩的0应助kk采纳,获得10
6秒前
科研通AI6.1应助杨玲采纳,获得10
6秒前
FashionBoy应助林一采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
胖肉肉发布了新的文献求助10
8秒前
8秒前
8秒前
上官若男应助小陈采纳,获得10
8秒前
8秒前
8秒前
shero快毕业完成签到 ,获得积分10
8秒前
结实的冰真完成签到,获得积分20
8秒前
9秒前
9秒前
充电宝应助馍馍采纳,获得10
9秒前
山山而川发布了新的文献求助10
9秒前
9秒前
量子星尘发布了新的文献求助10
9秒前
yy发布了新的文献求助10
10秒前
bkagyin应助finn采纳,获得10
10秒前
10秒前
无花果应助催化民工采纳,获得10
11秒前
12秒前
无限尔云完成签到,获得积分10
12秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5750276
求助须知:如何正确求助?哪些是违规求助? 5463221
关于积分的说明 15366303
捐赠科研通 4889428
什么是DOI,文献DOI怎么找? 2629165
邀请新用户注册赠送积分活动 1577481
关于科研通互助平台的介绍 1533992