A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning

计算机科学 图形模型 领域(数学) 水准点(测量) 概率逻辑 数据科学 多样性(控制论) 任务(项目管理) 深度学习 人工智能 分类学(生物学) 代表(政治) 分拆(数论) 机器学习 数据挖掘 系统工程 工程类 组合数学 政治 数学 政治学 法学 纯数学 地理 大地测量学 生物 植物
作者
Di Jin,Zhizhi Yu,Pengfei Jiao,Shirui Pan,Dongxiao He,Jia Wu,Philip L. H. Yu,Weixiong Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:258
标识
DOI:10.1109/tkde.2021.3104155
摘要

Community detection, a fundamental task for network analysis, aims to partition a network into multiple sub-structures to help reveal their latent functions. Community detection has been extensively studied in and broadly applied to many real-world network problems. Classical approaches to community detection typically utilize probabilistic graphical models and adopt a variety of prior knowledge to infer community structures. As the problems that network methods try to solve and the network data to be analyzed become increasingly more sophisticated, new approaches have also been proposed and developed, particularly those that utilize deep learning and convert networked data into low dimensional representation. Despite all the recent advancement, there is still a lack of insightful understanding of the theoretical and methodological underpinning of community detection, which will be critically important for future development of the area of network analysis. In this paper, we develop and present a unified architecture of network community-finding methods to characterize the state-of-the-art of the field of community detection. Specifically, we provide a comprehensive review of the existing community detection methods and introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning. We then discuss in detail the main idea behind each method in the two categories. Furthermore, to promote future development of community detection, we release several benchmark datasets from several problem domains and highlight their applications to various network analysis tasks. We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助俏皮的寻芹采纳,获得10
刚刚
riceyellow完成签到,获得积分10
刚刚
cloud完成签到,获得积分10
1秒前
1秒前
1秒前
飘逸蜡烛完成签到,获得积分10
3秒前
3秒前
3秒前
4秒前
蓝莓小姐完成签到,获得积分10
4秒前
kkk完成签到,获得积分20
4秒前
Orange应助淳于黎昕采纳,获得10
5秒前
lilei完成签到,获得积分10
5秒前
wqtq完成签到,获得积分10
6秒前
bystanding完成签到,获得积分10
6秒前
6秒前
7秒前
7秒前
龘龘完成签到,获得积分10
7秒前
万能图书馆应助yatou5651采纳,获得10
7秒前
科研通AI2S应助么么叽采纳,获得10
7秒前
咳欧克完成签到,获得积分20
8秒前
9秒前
9秒前
迷雾围城发布了新的文献求助10
9秒前
Lucas应助小城故事和冰雨采纳,获得10
9秒前
9秒前
junsizzz完成签到,获得积分10
10秒前
悦耳丹翠完成签到,获得积分10
11秒前
彭于晏应助huahua采纳,获得10
11秒前
ZZZZZ发布了新的文献求助10
12秒前
iNk发布了新的文献求助200
12秒前
斯文败类应助zzz采纳,获得10
12秒前
14秒前
14秒前
像鱼发布了新的文献求助10
14秒前
14秒前
Emma应助敬老院N号采纳,获得10
15秒前
15秒前
无铭完成签到,获得积分20
15秒前
高分求助中
Lire en communiste 1000
Ore genesis in the Zambian Copperbelt with particular reference to the northern sector of the Chambishi basin 800
Becoming: An Introduction to Jung's Concept of Individuation 600
中国氢能技术发展路线图研究 500
Communist propaganda: a fact book, 1957-1958 500
Briefe aus Shanghai 1946‒1952 (Dokumente eines Kulturschocks) 500
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3168812
求助须知:如何正确求助?哪些是违规求助? 2820111
关于积分的说明 7929423
捐赠科研通 2480192
什么是DOI,文献DOI怎么找? 1321277
科研通“疑难数据库(出版商)”最低求助积分说明 633136
版权声明 602497