A Survey of Community Detection Approaches: From Statistical Modeling to Deep Learning

计算机科学 图形模型 领域(数学) 水准点(测量) 概率逻辑 数据科学 多样性(控制论) 任务(项目管理) 深度学习 人工智能 分类学(生物学) 代表(政治) 分拆(数论) 机器学习 数据挖掘 系统工程 工程类 组合数学 政治 数学 政治学 法学 纯数学 地理 大地测量学 生物 植物
作者
Di Jin,Zhizhi Yu,Pengfei Jiao,Shirui Pan,Dongxiao He,Jia Wu,Philip L. H. Yu,Weixiong Zhang
出处
期刊:IEEE Transactions on Knowledge and Data Engineering [Institute of Electrical and Electronics Engineers]
卷期号:: 1-1 被引量:351
标识
DOI:10.1109/tkde.2021.3104155
摘要

Community detection, a fundamental task for network analysis, aims to partition a network into multiple sub-structures to help reveal their latent functions. Community detection has been extensively studied in and broadly applied to many real-world network problems. Classical approaches to community detection typically utilize probabilistic graphical models and adopt a variety of prior knowledge to infer community structures. As the problems that network methods try to solve and the network data to be analyzed become increasingly more sophisticated, new approaches have also been proposed and developed, particularly those that utilize deep learning and convert networked data into low dimensional representation. Despite all the recent advancement, there is still a lack of insightful understanding of the theoretical and methodological underpinning of community detection, which will be critically important for future development of the area of network analysis. In this paper, we develop and present a unified architecture of network community-finding methods to characterize the state-of-the-art of the field of community detection. Specifically, we provide a comprehensive review of the existing community detection methods and introduce a new taxonomy that divides the existing methods into two categories, namely probabilistic graphical model and deep learning. We then discuss in detail the main idea behind each method in the two categories. Furthermore, to promote future development of community detection, we release several benchmark datasets from several problem domains and highlight their applications to various network analysis tasks. We conclude with discussions of the challenges of the field and suggestions of possible directions for future research.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
2010完成签到,获得积分10
刚刚
南桥发布了新的文献求助10
1秒前
1秒前
研友_841KWL完成签到,获得积分10
1秒前
cy完成签到,获得积分10
1秒前
yuanbai应助欢喜蛋挞采纳,获得30
1秒前
朱信姿发布了新的文献求助10
3秒前
NexusExplorer应助yutian采纳,获得10
3秒前
ding应助小太阳采纳,获得10
4秒前
想个昵称怪费劲完成签到,获得积分10
4秒前
UUU完成签到 ,获得积分10
4秒前
4秒前
5秒前
5秒前
6秒前
hyman1218完成签到,获得积分10
6秒前
rrrrrr发布了新的文献求助10
6秒前
7秒前
雪兔妹妹完成签到,获得积分10
8秒前
mailure完成签到,获得积分10
8秒前
华仔应助完美的皮卡丘采纳,获得10
8秒前
小蘑菇应助王富贵采纳,获得10
10秒前
10秒前
小彻完成签到,获得积分10
10秒前
10秒前
夏天搞科研完成签到,获得积分20
10秒前
xrjyjp完成签到,获得积分10
12秒前
Ming发布了新的文献求助10
13秒前
量子星尘发布了新的文献求助30
13秒前
zty完成签到 ,获得积分10
13秒前
14秒前
深情安青应助ymr采纳,获得10
15秒前
地西泮完成签到,获得积分10
15秒前
ll发布了新的文献求助10
15秒前
科研蜗牛完成签到,获得积分10
16秒前
笑点低的凉面完成签到,获得积分10
16秒前
16秒前
Ivy完成签到,获得积分10
18秒前
wwz关闭了wwz文献求助
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5718202
求助须知:如何正确求助?哪些是违规求助? 5251289
关于积分的说明 15284999
捐赠科研通 4868486
什么是DOI,文献DOI怎么找? 2614197
邀请新用户注册赠送积分活动 1564030
关于科研通互助平台的介绍 1521515