Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features

计算机科学 人工智能 营养不良 工作量 班级(哲学) 人工神经网络 卷积神经网络 可穿戴计算机 接口(物质) 医学 嵌入式系统 气泡 病理 最大气泡压力法 并行计算 操作系统
作者
Guangzong Chen,Wenyan Jia,Yifan Zhao,Zhi‐Hong Mao,Benny Lo,Alex Kojo Anderson,Gary Frost,Modou Lamin Jobarteh,Megan A. McCrory,Edward Sazonov,Matilda Steiner‐Asiedu,Richard Stephen Ansong,Tom Baranowski,Lora E. Burke,Mingui Sun
出处
期刊:Frontiers in artificial intelligence [Frontiers Media]
卷期号:4 被引量:6
标识
DOI:10.3389/frai.2021.644712
摘要

Malnutrition, including both undernutrition and obesity, is a significant problem in low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Rain_BJ完成签到,获得积分10
刚刚
1秒前
爱听歌的依霜完成签到,获得积分10
1秒前
skj你考六级完成签到,获得积分10
2秒前
simon完成签到,获得积分10
2秒前
汉堡包应助qq采纳,获得10
3秒前
hhhhh哈哈哈完成签到,获得积分10
3秒前
欧皇降霖发布了新的文献求助10
4秒前
慕青应助会飞的猪采纳,获得10
5秒前
Muller完成签到,获得积分10
6秒前
蜡笔小新发布了新的文献求助10
6秒前
6秒前
6秒前
7秒前
chen完成签到,获得积分10
8秒前
9秒前
天天快乐应助饱满的亦旋采纳,获得10
9秒前
砰砰彭发布了新的文献求助10
10秒前
11秒前
潮汐发布了新的文献求助10
11秒前
12秒前
浮游应助程青青采纳,获得10
12秒前
野性的山雁关注了科研通微信公众号
12秒前
13秒前
13秒前
量子星尘发布了新的文献求助150
15秒前
李爱国应助cj采纳,获得10
16秒前
qq发布了新的文献求助10
16秒前
科研通AI6应助龙天宇采纳,获得10
16秒前
jxy发布了新的文献求助10
16秒前
aaa发布了新的文献求助10
17秒前
18秒前
万有引力发布了新的文献求助10
19秒前
xjc完成签到 ,获得积分10
19秒前
19秒前
zxx发布了新的文献求助10
19秒前
张作雅完成签到 ,获得积分10
20秒前
星星发布了新的文献求助10
21秒前
十三完成签到,获得积分10
21秒前
南歌子完成签到 ,获得积分10
22秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Handbook of Social and Emotional Learning 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5143226
求助须知:如何正确求助?哪些是违规求助? 4341244
关于积分的说明 13519986
捐赠科研通 4181483
什么是DOI,文献DOI怎么找? 2293009
邀请新用户注册赠送积分活动 1293582
关于科研通互助平台的介绍 1236234