Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features

计算机科学 人工智能 营养不良 工作量 班级(哲学) 人工神经网络 卷积神经网络 可穿戴计算机 接口(物质) 医学 嵌入式系统 操作系统 最大气泡压力法 病理 气泡 并行计算
作者
Guangzong Chen,Wenyan Jia,Yifan Zhao,Zhi‐Hong Mao,Benny Lo,Alex Kojo Anderson,Gary Frost,Modou Lamin Jobarteh,Megan A. McCrory,Edward Sazonov,Matilda Steiner‐Asiedu,Richard Stephen Ansong,Tom Baranowski,Lora E. Burke,Mingui Sun
出处
期刊:Frontiers in artificial intelligence [Frontiers Media SA]
卷期号:4 被引量:6
标识
DOI:10.3389/frai.2021.644712
摘要

Malnutrition, including both undernutrition and obesity, is a significant problem in low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
qweqwe完成签到,获得积分10
1秒前
lee完成签到,获得积分10
2秒前
简单的笑蓝完成签到 ,获得积分10
3秒前
3秒前
洁仔发布了新的文献求助10
3秒前
gaiaaxy完成签到,获得积分20
4秒前
5秒前
王予曦完成签到,获得积分10
6秒前
科研通AI2S应助俊逸凌雪采纳,获得10
6秒前
7秒前
7秒前
云鹤完成签到 ,获得积分10
8秒前
8秒前
大佬发布了新的文献求助10
11秒前
逝水无痕发布了新的文献求助10
11秒前
11秒前
唠叨的曼雁发布了新的文献求助100
13秒前
14秒前
优秀如雪完成签到,获得积分20
16秒前
韩芸姣发布了新的文献求助10
17秒前
优美葵阴完成签到,获得积分20
19秒前
调研昵称发布了新的文献求助10
20秒前
子车茗应助称心的胡萝卜采纳,获得10
21秒前
22秒前
饭团0814完成签到,获得积分10
23秒前
勤劳锦程完成签到 ,获得积分10
23秒前
谨慎的睫毛膏完成签到,获得积分20
24秒前
王秋婷发布了新的文献求助10
25秒前
脑洞疼应助FAY采纳,获得10
26秒前
优美葵阴发布了新的文献求助10
26秒前
27秒前
乐乐应助dadasigua采纳,获得10
27秒前
唠叨的曼雁完成签到,获得积分10
28秒前
zxin完成签到,获得积分10
28秒前
Res_M发布了新的文献求助10
29秒前
Ava应助sanling采纳,获得60
30秒前
整齐新儿发布了新的文献求助10
33秒前
35秒前
36秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Aspects of Babylonian celestial divination : the lunar eclipse tablets of enuma anu enlil 1500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 1000
Classics in Total Synthesis IV: New Targets, Strategies, Methods 1000
지식생태학: 생태학, 죽은 지식을 깨우다 600
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3459121
求助须知:如何正确求助?哪些是违规求助? 3053676
关于积分的说明 9037638
捐赠科研通 2742926
什么是DOI,文献DOI怎么找? 1504571
科研通“疑难数据库(出版商)”最低求助积分说明 695334
邀请新用户注册赠送积分活动 694605