Food/Non-Food Classification of Real-Life Egocentric Images in Low- and Middle-Income Countries Based on Image Tagging Features

计算机科学 人工智能 营养不良 工作量 班级(哲学) 人工神经网络 卷积神经网络 可穿戴计算机 接口(物质) 医学 嵌入式系统 气泡 病理 最大气泡压力法 并行计算 操作系统
作者
Guangzong Chen,Wenyan Jia,Yifan Zhao,Zhi‐Hong Mao,Benny Lo,Alex Kojo Anderson,Gary Frost,Modou Lamin Jobarteh,Megan A. McCrory,Edward Sazonov,Matilda Steiner‐Asiedu,Richard Stephen Ansong,Tom Baranowski,Lora E. Burke,Mingui Sun
出处
期刊:Frontiers in artificial intelligence [Frontiers Media]
卷期号:4 被引量:6
标识
DOI:10.3389/frai.2021.644712
摘要

Malnutrition, including both undernutrition and obesity, is a significant problem in low- and middle-income countries (LMICs). In order to study malnutrition and develop effective intervention strategies, it is crucial to evaluate nutritional status in LMICs at the individual, household, and community levels. In a multinational research project supported by the Bill & Melinda Gates Foundation, we have been using a wearable technology to conduct objective dietary assessment in sub-Saharan Africa. Our assessment includes multiple diet-related activities in urban and rural families, including food sources (e.g., shopping, harvesting, and gathering), preservation/storage, preparation, cooking, and consumption (e.g., portion size and nutrition analysis). Our wearable device ("eButton" worn on the chest) acquires real-life images automatically during wake hours at preset time intervals. The recorded images, in amounts of tens of thousands per day, are post-processed to obtain the information of interest. Although we expect future Artificial Intelligence (AI) technology to extract the information automatically, at present we utilize AI to separate the acquired images into two binary classes: images with (Class 1) and without (Class 0) edible items. As a result, researchers need only to study Class-1 images, reducing their workload significantly. In this paper, we present a composite machine learning method to perform this classification, meeting the specific challenges of high complexity and diversity in the real-world LMIC data. Our method consists of a deep neural network (DNN) and a shallow learning network (SLN) connected by a novel probabilistic network interface layer. After presenting the details of our method, an image dataset acquired from Ghana is utilized to train and evaluate the machine learning system. Our comparative experiment indicates that the new composite method performs better than the conventional deep learning method assessed by integrated measures of sensitivity, specificity, and burden index, as indicated by the Receiver Operating Characteristic (ROC) curve.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
巴黎的防发布了新的文献求助10
1秒前
1秒前
2秒前
竹精灵完成签到,获得积分10
2秒前
AATRAHASIS完成签到,获得积分10
2秒前
2秒前
传奇3应助zhaxiao采纳,获得10
3秒前
AOTUMAN完成签到,获得积分10
4秒前
4秒前
应天亦发布了新的文献求助10
4秒前
4秒前
颖w完成签到,获得积分10
5秒前
smart完成签到,获得积分10
6秒前
6秒前
小蘑菇应助hahhh7采纳,获得10
6秒前
T拐拐发布了新的文献求助10
7秒前
达达利亚发布了新的文献求助10
7秒前
LYL2003发布了新的文献求助30
8秒前
鸿hhh完成签到,获得积分20
8秒前
8秒前
MSBLANK完成签到,获得积分10
8秒前
Gauss应助清风采纳,获得30
9秒前
你我的共同完成签到 ,获得积分10
10秒前
酱啊油发布了新的文献求助10
10秒前
丙烯酸树脂完成签到,获得积分10
11秒前
BB完成签到,获得积分10
11秒前
坦率的匪应助静仰星空采纳,获得10
12秒前
12秒前
actor2006完成签到,获得积分10
13秒前
zhaxiao完成签到,获得积分10
13秒前
13秒前
希望天下0贩的0应助淘淘采纳,获得10
13秒前
冰火油条虾完成签到,获得积分10
13秒前
陈逸恒发布了新的文献求助10
13秒前
大红完成签到,获得积分10
13秒前
爆米花应助应天亦采纳,获得10
14秒前
善学以致用应助echooooo采纳,获得10
14秒前
墨卿完成签到,获得积分10
14秒前
uraylong发布了新的文献求助10
15秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Handbook of Marine Craft Hydrodynamics and Motion Control, 2nd Edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3987267
求助须知:如何正确求助?哪些是违规求助? 3529546
关于积分的说明 11245872
捐赠科研通 3268108
什么是DOI,文献DOI怎么找? 1804089
邀请新用户注册赠送积分活动 881339
科研通“疑难数据库(出版商)”最低求助积分说明 808653