On the use of machine learning and network tomography for network slices monitoring

计算机科学 架空(工程) 过程(计算) 财产(哲学) 钥匙(锁) 网络拓扑 推论 人工神经网络 集合(抽象数据类型) 计算 数据挖掘 人工智能 分布式计算 任务(项目管理) 机器学习 算法 计算机网络 哲学 经济 管理 操作系统 程序设计语言 认识论 计算机安全
作者
Anouar Rkhami,Yassine Hadjadj‐Aoul,Gerardo Rubino,Abdelkader Outtagarts
标识
DOI:10.1109/hpsr52026.2021.9481795
摘要

Network Slicing (NS) is a key technology that enables network operators to accommodate different types of services with varying needs on a single physical infrastructure. Despite the advantages it brings, NS raises some technical challenges, mainly ensuring the Service Level Agreements (SLA) for each slice. Hence, monitoring the state of these slices will be a priority for ISPs. However, due to the high measurements overhead, it is generally forbidden to directly measure the performance of all of these slices. To overcome this limitation, network tomography is a promising solution, consisting of a set of methods of inferring unmeasured network metrics using end-to-end measurements between monitors. In this work, we focus on inferring the additive metrics of slices such as delays or logarithms of loss rates. We model the inference task as a regression problem that we solve using neural networks. In our approach, we train the model on an artificial dataset. This not only avoids the costly process of collecting a large set of labeled data but has also a nice covering property useful for the procedure's accuracy. Moreover, to handle a change on the topology or the slices we monitor, we propose a solution based on transfer learning in order to find a trade-off between the quality of the solution and the cost to get it. Simulation results with both, emulated and simulated traffic show the efficiency of our method compared to existing ones in terms of both accuracy and computation time.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
yeyeye完成签到,获得积分10
1秒前
2秒前
虾米发布了新的文献求助120
2秒前
2秒前
佳佳完成签到,获得积分20
2秒前
完美世界应助CMUSK采纳,获得10
3秒前
3秒前
3秒前
4秒前
Hungrylunch应助春雷采纳,获得30
7秒前
开心尔芙完成签到,获得积分10
7秒前
zhouyupeng完成签到,获得积分10
7秒前
······发布了新的文献求助10
7秒前
Serena发布了新的文献求助10
8秒前
8秒前
9秒前
大个应助草莓味的榴莲采纳,获得10
9秒前
星辰大海应助BALANCE采纳,获得10
10秒前
出去来发布了新的文献求助10
10秒前
SYLH应助穆海亦采纳,获得10
10秒前
小北发布了新的文献求助10
10秒前
11秒前
慵懒的猫发布了新的文献求助10
12秒前
crown1010完成签到,获得积分10
12秒前
果子黄发布了新的文献求助10
12秒前
13秒前
犹豫梨愁发布了新的文献求助10
14秒前
15秒前
烟花应助小程同学采纳,获得10
15秒前
15秒前
TaoJ应助魔幻的竺采纳,获得10
16秒前
16秒前
自觉秋完成签到,获得积分20
16秒前
太白金鑫发布了新的文献求助30
16秒前
CMUSK发布了新的文献求助10
17秒前
Akaqqqi完成签到,获得积分10
18秒前
19秒前
脑洞疼应助小北采纳,获得10
20秒前
科研通AI5应助韭酱采纳,获得100
20秒前
吴欣霞发布了新的文献求助10
21秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3488999
求助须知:如何正确求助?哪些是违规求助? 3076463
关于积分的说明 9145401
捐赠科研通 2768731
什么是DOI,文献DOI怎么找? 1519357
邀请新用户注册赠送积分活动 703805
科研通“疑难数据库(出版商)”最低求助积分说明 702009